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Computational fluid dynamics (CFD) is a large branch of scientific computing that lately
has undergone explosive growth. It draws upon elements from related disciplines: fluid
mechanics, numerical analysis, theory of partial differential equations, computer science, and
computational geometry. By selecting certain topics we try to trace the way the dramatic
growth came about and to illustrate the interplay of the related disciplines The scope is broad
and the emphasis is on discussing the underlying fundamentals 1n order to present an overall
perspective on CFD. The focus is on the evolution of nonsmooth features 1n inviscid flows,
primarily macroscale discontinuities like shock waves and vortex sheets admitted as solutions
to the Euler equations, but also with some view to their possible unstable progression into
small-scale features, ending ultimately in turbulence. Some of the current finite-difference
methods, and the theory they are based upon, which are used to treat these problems are
reviewed, and different grid generation techniques are introduced. Together with some prin-
ciples for using advanced supercomputers, we also discuss how the methods are implemented
on these machines. A number of computed results, some of them new and of large scale with
up to one million grid points, are presented which reflect the himits of the theory and the
current status of the field. ' 1987 Academic Press, Inc

1. INTRODUCTION

Computational fluid dynamics (CFD) is the science of producing numericai
solutions to a system of partial differential equations which describe fluid flow.
CFD is done by discrete methods and the purpose is to better understand
qualitative and quantitative physical phenomena in the flow which then is often
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used to improve upon engingering design. It is a branch of scientific computing that
has recently altered the traditional interplay between the two arms of classical con-
tinuum mechanics—mathematical analysis and experiments in the laboratory.
Although very successful when applied to linear problems and some special
phenomena, these two traditional disciplines alone have been stymied on the dif-
ficult nonlinear problems. On these problems CFD joins together synergetically
with both analysis and experiment and allows us to actually see the nonlinear
phenomena, to come to a better understanding of its essential structure, and in turn
to suggest previously unthought of ways to build that particular feature into an
improved analytical model. Thus progress is made. CFD brings together a number
of different traditional disciplines: fluid mechanics, the mathematical theory of par-
tial differential equations, computational geometry, numerical analysis, and the
computer science of programming algorithms and processing data structures.
Among other things in this review, we try to bring out the interplay of these five
fields that comes about when solving fluid-flow problems by numerical methods.
Above all we find that it is the utilitarian demand for practical solutions together
with the appearance of more and more powerful computers to carry out the com-
putations that drives forward the development of CFD. In addition, the increasing
number of supercomputers that are bought for this application is an indication of
its growth.

The purpose and scope of this paper are not those of an encyclopedic review of
all that has been done; instead we paint a picture of CFD with broad strokes in
order to present an overall and personal perspective of the field. All the topics
touched upon here cannot be delved into in detail, but we do discuss some at
greater length than others in order to explain some fundamental underlying prin-
ciples and to bring out the synthesis of the various disciplines. The applications
come mostly from aerodynamics, the field we know best, and not from hydrology,
marine hydrodynamics, meteorology, or combustion. In the final analysis it is more
like a personal view of what we think have been significant aspects in the develop-
ment of CFD. Other points of view have been expressed in surveys by Krause [55],
Shang [54], and others [76, 81, 83, 23, 25, 52]. Also the foundations upon which
the whole field is built, are now reasonably well covered in text books [34, 74, 38,
37, 69, 71, 84, 140, 141, 6, 77, 177].

A large class of fluid problems can be categorized as smooth flows for which no
discontinuities or fronts, of either large or small scale, appear. Many problems of
incompressible and irrotational flow governed by elliptic equations, which are often
linear, are in this class. Usually there is no difficulty in obtaining a good numerical
solution. The current research in this field now tries to refine the solution methods
to make them converge faster and perform more effectively. In contrast to these are
nonsmooth flows for which the governing equations are usually hyperbolic and
always nonlinear. Nonsmooth features include shock waves, vortex singularities,
and turbulence. Shocks are large-scale phenomena and inherently stable structures.
Underway for four decades, their study by numerical methods is in a mature, but
still very active, phase. Flows with vortex singularities also have long been under
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study but, unlike shocks, these large-scale features are inherently unstable and lead
to ill-posed mathematical problems. Progress therefore has been slower. A remain-
ing unsolved problem of fluid mechanics, turbulence, is the ultimate nonsmooth
flow. Here instabilities occur on many scales although, in some sense, averaged
quantities may be stable and coherent large-scale features may evolve. The interplay
between the large-scale and small-scale motions dominates the problem, and the
idea of turbulence modelling is founded on the belief that the effect of the small
scales on the large scales can be modelled in a simpler way than computing them
completely.

From this very broad scope of problems, our personal choice is to focus on the
treatment of nonlinear phenomena in fluid mechanics with the emphasis on the
growth of nonsmooth macroscaie features like shock waves, fronts, and vortices,
along with some discussion of microscale features that evolve from vortex-sheet
instabilities. We are primarily concerned with the appearance of such phenomena in
the solution to a system of evolutionary hyperbolic equations, and therefore we
concentrate mostly on nonlinear advection in the context of the Euler equations, an
appropriate model of flows with negligible viscosity. Discontinuous or nearly dis-
continuous flows have been sources for many new ideas in CFD and they are 1deal
examples of the benefit of the theory—application interaction. In connection to
these problems we shall discuss the effect of geometry on boundary conditions and
the computational mesh and also the impact of different computer environments.
The following illustrations serve to visualize the types of phenomena we are
interested in.

Shock-Wave Interactions

Figure 1 is a shadowgram of a shock wave traveling to the right and difracted
around a protruding edge [1]. There is a reflected shock that intersects with the
original shock producing a Mach stem and a contact discontinuity at the so-called
triple point. The flow also separates from the edge in a vortex sheet that coils up
into a nearly circular spiral due to the Kelvin-Helmholtz instability and forms
an edge vortex [22]. The flow is supersonic and a lambda shock appears due to
the acceleration along the start of the vortex sheet. The spiral seems to ingest the
contact discontinuity which is a rather stable feature.

Finite amplitude discontinuities can also occur on the surface of an incom-
pressible fluid under the influence of gravity, e.g., river flow. If one restricts atten-
tion only to waves that are long in relation to the depth of the river, one develops
an inviscid theory for shallow water. Stoker [27] draws the analogy between the
resulting shallow-water equations and the Euler equations of compressible flow. In
this context the Froude number, the ratio of the inertial force to the force of
gravity, plays the same role as the Mach number. Under certain conditions and
riverbed topography. the Froude number becomes greater than one, and surface
waves can break and form a hydraulic jump or tidal bore [3, 57]. The evolution of a
discontinuity like this one, by breaking, has been an intriguing and long-standing
problem of water-wave theory.
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FiG. 1. Shadowgram of shock wave reflection and diffraction around a salient edge producing
the rollup of a spiral vortex sheet [1].

Vortex Dynamics

When one stream of fluid flows faster over a second stream, a discontinuity in
tangential velocity, called a vortex sheet, exists across the interface of the two fluids.
It is linearly unstable to infinitesimally small perturbations; this is the classical
Kelvin—Helmholtz instability. In the case of two superposed streams of water, Fig. 2
depicts how a sinusoidal disturbance at the most unstable frequency grows
downstream from left to right into spirals that eventually pair into a structured vor-
tical formation sometimes called Kelvin’s cat’s eyes [ 14]. It is thought that studying
the development of coherent structures like this may lead to a better understanding
of the turbulent mixing layer, jets, and wakes.

We also find such spiraling motions in other situations. When two confluent

Fic. 2. Kelvin—Helmholtz instability of vortex sheet in incompressible flow. The faster stream,
above a slower stream moving to the right, is perturbed sinusoidally and illuminated in laser light [14]
(reprinted with permission).



COMPUTATIONAL FLUID DYNAMICS 5

streams meet a salient edge, they may separate from it in a shear layer (vortex sheet
in the limit of zero viscosity). Under the influence of its own vorticity, the sheet
rolls up dynamically into a spiral vortex. The spiral itself, however, is only weakly
stable, and its stability decreases when subjecied . to disturbances of decreasing
wavelength [16, 17]. It can be categorized as a form of Rayleigh instability because
its velocity profile contains an inflection point (see Ref. [7, p. 131]). If a short-wave
disturbance causes the sheet to kink, the sheet folds over on itself and then rolls up
into a spiral vortex. The shadowgram photograph by Pierce [8] (Fig. 3) shows the
shear layer in a low speed flow separating from a sharp-edged plate and coiling into
a spiral. It also shows a number of small disturbances superposed on the layer caus-
ing it to fold and roll up into so-called ornamentation vortices, creating a hierarchy
of coils upon coils. These grow larger as the parent coil spirals inward, ending in a
disordered core. A similar unstable spiraling is just visibie in Fig. 1.

If a low-speed stream flows past an edge at incidence that is swept back with
respect to the stream, as in the case of a delta wing, a stable and steady spiral vor-
tex is shed from the leading edge. As the angle of attack is increased, however, a
dramatic event can take place at some position along the axis of the vortex where
its ordered structure breaks down. From a strong tightly bound spiral motion

Fi6. 3. Shadowgraph in which vapor released from the salient edge accelerating rapidly upwards
through air shows the instability of the spiraling vortex sheet [87 (reprinted with permission).
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FiG. 5. Shadowgram of shock-induced vortex bursting on a delta wing mounted in a wind tunnel,
M, =1.1 and a= 14" [21]; B: bow shock, S: trailing edge shock, V: vortex (courtesy FFA).
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upstream (Fig. 4), the flow suddenly decelerates along the axis. The core itself then
begins to spiral with lower velocity in expanding loops, and it eventually decays
into large-scale turbulence [10]. There is still no comprehensive theory that
accounts for all of the details of vortex bursting.

At high speeds, furthermore, a shock wave encountering a vortex can also trigger
bursting. Figure 5 shows an example of a delta wing mounted in a wind tunnel that
meets a supersonic stream M =1.1 at 14° incidence [21]. The vortex core over
the wing is tightly wound until it interacts with the oblique shock at the trailing
edge of the wing where it bursts, grows larger in diameter, and becomes turbulent.

After-Body Flow

All of the phenomena we have shown so far are relatively insensitive to the effects
of viscosity. In high-Reynolds-number flows these effects are felt in thin layers
adjacent to solid walls. When the body in a supersonic stream is blunt, as the
sphere in Fig. 6, the flow expands around the flanks of the body where a recom-

7

FiG. 6. . Shadowgram of supersonic flow around a sphere in free-flight at M, = 1.53 showing shock
waves and the fluctuating turbulent wake (Photograph by A. C. Charters, Ref. [207; reprinted with per-
mission ).
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pression shock causes the boundary layer to separate and creates a free shear layer
between the outer flow and the wake of the body [20]. Further downstream this
shear layer grows progressively unstable and the wake becomes turbulent. Follow-
ing the contour of the wake, the outer flow has to turn through a series of
compression waves that coalesce into a shock.

Outline of the Review

The review begins by first sketching the origins of CFD, and pointing out some
of its recurring themes, then we lay down some of the essentials of the mathematical
foundation for numerical solutions to hyperbolic equations and describe the means
by which one can discretize the domain of the flow. The discussion goes on to sur-
vey various approaches for approximating the continuum problem of hyperbolic
conservation laws and for obtaining a finite-dimensional solution to them using
advanced supercomputers. We conclude with a section presenting computed
solutions, some of them of very large scale, to indicate the current status of what
can be done numerically to simulate nonsmooth features in fluid flows.

2. ORIGINS AND THEMES oF CFD

The period from the time of discovery of the basic equations by Euler and by
Navier and Stokes up until the beginning of this century may be called classical in
the sense that fundamental and analytical solutions were being sought. One can
perhaps mark the beginning of the CFD era to 1917 when L. F. Richardson [26]
attempted to integrate the meteorological equations numerically (by hand) in order
to make the first numerical weather forecast. He started this during spare moments
as an ambulance driver at the front during World War I. Although CFD really
began in earnest in the 1940s, his work is significant because it embodies the spirit
of CFD which is driven by the need to obtain an answer to a practical problem. In
addition, he already envisioned the power of parallel computing and was earnestly
advocating numerical weather forecasts to be carried out by 64,000 computers
working in parallel [27]. In that day, of course, a computer was a human being.
His attempt to integrate the meteorological equations was unsuccessful because of
the limited theoretical understanding of the stability of the numerical method, poor
initial conditions, and the lack of a computing machine to carry out the com-
putations on a larger scale. Still it was a landmark event because by its failure it
underscored those arcas of the numerical theory that needed to be developed
further. And this is a theme that we find occurring over and over again in CFD—an
attempt to compute a solution to a practical problem meets with less than complete
success because of limitations in the fundamental theory, which in turn prompts
theoreticians to work to advance the theory further.

After Richardson’s shortcoming, the focus fell back to more linear models of the
problem. During the 1930s a strong practical impetus to CFD came from the fledgl-
ing airplane industry which needed a means to incorporate the theory of flight into
its understanding and design of airplanes. In those days that meant flight at slow
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speeds; viscosity and vorticity were neglected, and the flow model was the Laplace
equation. Based on the theory of complex variables, the approach taken was
analytical, the superposition of elementary solutions [287]. As the aerodynamic
shapes under investigation grew more complex, it matured in later decades inte the
computational singularity techniques called boundary integral, or more commonly,
panel methods [43]. Viscosity was accounted for by solving the boundary-layer
equations of Prandtl’s theory using finite-difference methods and mechanical
calculating machines [29]. Later there were also attempts, in an iterative fashion,
to couple together the external potential flow with the boundary-layer solution. The
relaxation method was also being applied to solve the Laplace equation by finite
differences [59 7.

Meanwhile the mathematicians like Hadamard, Courant, and Friedrichs, were
building the theory of hyperbolic partial differential equations, with the goal of
understanding fundamental issues like the well-posedness of the problem, the
propagation of waves, the smoothness of the solution, and its uniqueness. It was
work on establishing a fundamental result on uniqueness that led Courant,

During the 1940s, however, the two groups, the theoreticians and the prac-
titioners, began to draw closer together. The advent of the jet plane, supersonic mis-
siles, and high-energy blast waves brought demands for solutions to practical
problems that went beyond the reach of methods based on the current theory of
potential and linear hyperbolic equations. The heart of the difficulty was the
numerical treatment of the nonlinear occurence of shock waves. This instigated a
large effort by von Neumann, Richtmyer, Lax, and others working closely with
computing methods to establish a mathematical theory of nonlinear hyperbolic
conservation laws for the purpose of computing flows with shocks. (The book by
Fox [30] reflects how far these efforts progressed during the 1950s.)

But because many of the transonic and hypersonic problems in aerodynamics are
steady, the aeronautical community did not immediately embrace the newly emerg-
ing hyperbolic methods. Instead, as was commonplace during the earlier decades,
special methods were sought to solve the specific nonlinear steady problem. The so-
called blunt-body problem is a good example [49]. When a blunt obstacie trevels
through air at a constant supersonic speed, a shock wave appears in the flow,
termed a bow shock because it stands detached from and ahead of the body. If the
goal is to predict the location of the bow shock and the flow properties between it
and the body, then the appropriate model is the steady Euler equations. Except in a
small region between the body and the shock, the speed of the flow is always super-
sonic. This subsonic pocket is what characterizes the problem and makes it difficalt
because the equations are of mixed type—elliptic within the pocket and hyperbolic
outside, where the flow is supersonic. No general mathematical theory has been
proposed to solve mixed-type equations, but a number of special methods were
devised in the late 1950s to solve, specifically, the blunt-body problem. Among
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them were Van Dyke’s inverse method [427], that first assumed a shape for the bow
shock and performed an unstable but controllable numerical march from it inward
to determine the corresponding body shape and then adjusted the shock shape until
the desired body was obtained. Another one was Dorodnitsyn’s method of integral
relations which reduced the problem to a set of ordinary differential equations [32,
33]. All of these specialized blunt-body methods, however, were restricted to flows
at substantial supersonic speeds. The other important aerodynamic problem of
mixed type, the case of subsonic but supercritical flow past an airfoil, where a
supersonic pocket is embedded in a subsonic field could not be solved satisfactorily
by these methods. The solution of the transonic airfoil problem was first obtained in
1970 by the relaxation procedure of Murman and Cole [97] for the nonlinear
small-disturbance potential equation and was the initial use of an upwind scheme in
aerodynamics. Oswatitsch and Zierep [53] present a good survey of the methods
being used up to 1975 to solve transonic aerodynamic problems. For a later
account see Jameson [527].

For truly time-varying flow problems, however, practitioners of CFD, primarily
in fields other than aerodynamics like meteorology, plasma physics, and geophysics,
were beginning to apply the theory that the mathematicians had been laying down
for hyperbolic evolutionary equations [30, 31]. By now the development of the
theory had advanced from purely linear problems to the understanding of weak
solutions to conservation laws. During the 1960s news of the success with the
general time-dependent hyperbolic approach in these other fields spread to the
aerodynamics community where it was adapted for the solution of steady flows.
The idea was to integrate the unsteady hyperbolic full potential and Euler
equations forward in time, while maintaining steady boundary conditions, as all the
transient fluctuations began to disperse, until the steady state was reached
asymptotically. Although it demands more arithmetic operations, the resulting
time-asymptotic method proved to be both more effective and applicable to a wider
class of problems than any of the other more specialized methods, e.g., the blunt-
body procedures. This conclusion came about in part because of the broad latitude
for algorithm modification afforded by the underlying hyperbolic theory. Another
factor was the newly developed stability theory for difference approximations of
time-dependent partial differential equations by Lax, Kreiss, and others (see
Ref. [38]). Perhaps an even greater influence on the development came from the
increasing computer power which became generally available at that time. This
meant that additional computational work was no drawback. The supercomputer
of its day, the Control Data 6600, appeared in 1964 with the power of 1 Mflops (1
million floating point operations per second). It was followed by the 7600 in 1968,
offering 4 Mflops. And if the user was willing to program with special assembly-
language techniques, the performance of these two machines could be doubled to 2
and 8 Mflops, respectively. Here then is another recurring theme of CFD: If there
are computing machines readily available that can carry out the calculations in a
reasonable period of time, it can be more feasible to use a more straightforward
method built from a general theory, even though it requires more computational
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work, than to use a more detailed method based on a narrower theory with limited
application. The blunt-body problem with its various methods is a case in point.
Rusanov [48-50] and Moretti and Abbett [41] were pioneers of the time-
asymptotic approach for the blunt-body problem which now is used almost to the
exclusion of all specialized methods in aerodynamics. The need to study the flow
patterns around the space shuttle was one of the driving forces in the development
of this technique, and led, for example, to the first application of the finite-volume
method to the blunt-body problem by Rizzi and Inouye [57].

With the formulation of the problem decided, the debate in the 1970s then
centered on the treatment of shock waves. Traditional thinking suggested that if a
discontinuity exists in the flow, it should be treated as an internal boundary. Once
the shock is located, appropriate boundary conditions can be prescribed across it,
and then the regions of smooth flow on either side can be handled with well-
established methods. The concept is one of tracking or fitting the shock by special
features of the algorithm to the surrounding flow. All the blunt-body methods of
the 1970s treated the bow wave in this way because it can be intense and yet has &
simple geometry that is easy to track. Based on the prior theoretical and com-
putational work of von Neumann, Richtmyer, and Lax, the alternative concept was
to disregard the shock as an internal boundary and instead compute the entire fiow
as an approximate weak solution to properly formulated conservation laws, often
called the shock-capturing approach. Among others, Rizzi and Bailey [58] took a
hybrid approach in the study of hypersonic flow past the space shuttle at M, =20
and «=40°. Using the split MacCormack scheme in finite-volume form, they
tracked the bow wave but captured all of the other weaker shocks that develop
around the canopy and wing leading edge at this high angle of attack. Although
largely successful, this concept of capturing a shock does produce, in practice, smail
but unwanted side effects like anomalous oscillations in the solution near each side
of the discontinuity. Such effects have in turn spurred the theoreticians to formulate
entropy conditions, in order to obtain the correct jumps in the solution, and to
refine the details of the differencing scheme, in order to avoid the undesirable
oscillations. These theoretical endeavors to capture shock waves with more and
more accuracy continue under lively development today, as we describe in
Section 5.

Propelled by the current crop of supercomputers, of which the first was the
CRAY 1, these hyperbolic methods for nonlinear conservation laws are being
applied now to simulate a host of nonsmooth flow phenomena including fundamen-
tal macro-scale structures like shock waves, vortices, and wakes, as well as complex
interactions involving shock waves and boundary layers, shock waves and vortices,
thermal heating layers, base flows, vortical instabilities, and transition and the onset
of turbulence. As their predecessors did in the past, these demanding practical
applications today are going beyond the frontiers of the existing theory and thus
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unstable flows, ie., to solve ill-posed mathematical problems.
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We aim to survey some of the current advancements in the development of
evolutionary hyperbolic methods for nonlinear conservation laws, particularly as
they apply to the treatment of flows with nonsmooth structures. This means prime
attention is directed to the purely inviscid nonlinear advection problem as
embodied in the Euler equations. In keeping with the themes culled from past
developments sketched above, we illustrate how theory and practice go hand in
hand in current work and how advanced computer architectures and improvements
in the hardware may favor the application of one or another numerical algorithm.,
Our sketch of the origins of CFD indicates that practically all of the past develop-
ments were made in the context of the finite-difference method for numerical
approximation. More recently, of course, other approximation schemes have come
forth, notably the finite-element method, discrete vortex methods, and the spectral
method, which in many applications do offer properties superior to finite differen-
ces. But for illustrating the treatment of nonsmooth phenomena, the framework of
finite differences or, closely related to it, the finite-volume method is still a good
context, since it is there that much of the theory is being advanced.

3. MATHEMATICAL FOUNDATIONS FOR NUMERICAL SOLUTIONS

This section summarizes some of the elements of the mathematical foundation for
the numerical solution of nonlinear hyperbolic conservation laws that are essential
for our discussion. It falls naturally into two parts, the first contains the theory that
was developed before CFD came into full play and the second, the theory that was
nurtured by the requirements for CFD to move ahead.

Pre-CFD Theory

Most of the mathematical models that are used in today’s computational fluid
dynamics were already derived before it started. There are many examples: the
Navier—Stokes equations, the compressible and incompressible Euler equations,
potential equations, etc. The basic properties of these equations that we know
today were also to a large extent known before CFD began. The best presentation
of relevant mathematical theory for fluid dynamical applications before the CFD
period is probably the second volume by Courant and Hilbert, “Methods of
Mathematical Physics” [4].

The design of computational methods for fluid flow has benefitted a great deal
from this early theory. The concept of well-posed equations had been established. It
is essential in numerical simulation that the solution depends continuously on the
data. Bquations were classified into hyperbolic, parabolic, and elliptic types, by
their individual properties. The finite signal speed for hyperbolic equations and the
infinite speed for parabolic and elliptic problems are essential to the construction of
appropriate computational algorithms. So are the high regularity in elliptic and
parabolic problems and the lack of regularizing mechanisms for hyperbolic
problems. The variational formulations are fundamental for finite element methods.

Although some applications call for a fluid—particle approach and, hence, a
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Lagrangian description of the flow, our discussion concerns only the field represen-
tation of fluid phenomena, and therefore we work with the Eulerian formulation of
the equations. The most general continuum model for fluid flow is the
Navier—Stokes equations
op ..
—4div pv=0
ot P

%)’X+div(pvv+pl)=pg+div ut (3.1)

0 . .
—£+dlv(e +p)v=pg-v+div(x grad T+ uv-1)

represent the conservation of mass, momentum, and total energy per umnit volume
where t= —31div v+ grad v+ grad” v is the momentum flux density tensor due to
friction. The symbols p, p, 7, and v stand for the mass density, the pressure, the
temperature, and the velocity of the fluid, while u is the molecular viscosity coei-
ficient, «x is the molecular thermal conductivity, g is the body force per unit mass,
and I is the identity tensor. The divergence term on the left side of the momentum
equation accounts for the reversible transfer of momentum while the one on the
right side is the irreversible transfer. Additional equations must be given to relate
the thermodynamic variables and coefficients in order to close system (3.1).

The mathematical analysis of system (3.1) unfortunately has not been entirely
satisfactory. The behavior of these equations is parabolic in those regions where
viscosity has a significant effect, primarily near walls and in wakes, and it is hyper-
bolic in the remaining regions. As a system the equations are termed incompletely
parabolic and no simple boundary conditions are known in advance to lead to a
well-posed problem in general for the differential equations [70]. The situation is
even more uncertain for the discrete problem because a numerical solution requires
that additional boundary conditions be specified. The pressure and temperature at a
solid wall must be specified and some conditions must be set at the artifical boun-
dary in the far field where the flow enters or leaves the domain. Today there is no
agreement on how these conditions should be best specified. Nor is the stability
condition for the time integration of system (3.1) thoroughly understood. This
uncertain state of affairs is one of the factors that has led theoreticians to consider
simpler subsystems.

One natural, still having much practical interest for the study of shock waves and
vortex sheets, assumes that friction and heat conduction are negligible, i.e., u, x =0,
and results in the Euler equations

%+divpv=0

) .
%—Fdw(pvv +pl)=pg (3.2)

0
5§+div(e+p)v:pg-v.
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It is assumed then that vortex sheets form whenever an inviscid fluid flows
around a body having a sharp edge or corner, so that the velocity of the fluid
remains finite at the edge and the vorticity is convected away from it. Rigorous
proofs that such flows are in fact the limit of the laminar flow of a real fluid as its
kinematic viscosity vanishes have not yet been given, but experimental evidence and
heuristic theoretical arguments do support the assumption and there is no reason to
doubt it [9].

In addition to the implications for the physics, this assumption has broad
mathematical consequences. All of the second-order derivatives vanish, and the
system (3.2) becomes completely hyperbolic with fewer boundary conditions to be
specified, and their analysis is somewhat simpler, too. But it also means that sharp
gradients in the solution, which could have been supported by the second-order
terms across thin transition regions, now steepen and may ultimately break and
form a finite-amplitude discontinuity. This can come about from the interaction of
gravity waves, as in the case of tidal bores in shallow-water theory, or from the
interaction of acoustic waves building up to shocks. To study the latter, we drop
the body force and cast Egs.(3.2) into their integral form with respect to an
arbitrary volume v in an inertial frame

0
EJ qdv—i—”a F(g) -nds=0, (33)
where
0 p(v-n)
g=1pv|; F(g)-n=|pv(v-n)+pn
e (e+p)(v-n)

Derivatives of the dependent variables ¢ may be undefined in the interior of the
volume but their values on each side of a surface of discontinuity, which may move
with velocity w, must satisfy the so-called Rankine-Hugoniot jump relations

Lo(v,—w)]=0
Lpv.(v,—w)+p]=0
Lpv (v, —w)]1=0
Le(v, —w)+pv,]=0,

(3.4)

where the square brackets indicate the difference between the values of any quantity
[¢1=¢,— ¢, on the two sides of the surface and the subscripts n and ¢ represent
the velocity components normal and tangent to the discontinuity [69]. Equations
(3.4) constitute a complete system of boundary conditions at a surface of discon-
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tinuity. Two types are possible. If the mass flux is nonzero it is a shock wave and
satisfies [v,]1=0.

If there is no mass flux through the surface v,, = v,, = w, another possible solution
to Egs. (4) is continuous pressure [ p] =0, but the density and tangential velocity
may jump by any amount [p]#0 and [»,1#0. It is called by various
names—tangential discontinuity, slip line, or vortex sheet. We prefer the latter
because the shear in the velocity means that the surface contains vorticity (see
Fig. 7). The discontinuity in velocity is the strength of the sheet k=nx (v, —v,}, a
vector parallel to the sheet. A degenerate case is when v, =v, but [p]#0 and is
usually called a contact discontinuity. It is neutrally stable.

Shock waves are basically stable structures [3] whereas vortex sheets are
absolutely unstable. Consider first the classical case of the Kelvin—Helmholtz
instability for two parallel incompressible streams in shear (Fig. 8a). The interface
between the two, the vortex sheet, is linearly unstable and will degenerate into a
series of vorticity concentrations if the slightest disturbance is present. It is easy to

) L 41 PR AR S MO 4 (T2, Oy A . 41, 1. 4 _onsinan o=

HOL U1 SLICAIUIIICS dlOUld LIC CITSL, WILIL 4 COLLCSPOHULILE HICLCAdT UL VTIUCILY alilt
decrease of pressure, while on the opposite side of the sheet the streamlines diverge.
the velocity decreases, and the pressure increases. A pressure gradient therefore
arises that deflects the sheet in the direction of the arrows in Fig. 8a and amplifies
the initial perturbation. In another explanation of the physical mechanism,
Batchelor (p. 515 of Ref. [19]) traces the vorticity dynamics using the fundamental
properties of convecting vortex lines. A linear stability analysis (p. 20 of Ref [7])
shows that an infinitesimal disturbance of wavelength A on a plane infinite voriex

UPPER VELOCITY
PROFILE

VORTEX

Fic. 7. The vortex sheet, a stream surface with a discontinuity 1n tangential veiocity.

581/72/1-2
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FiG. 8. The classical Kelvin-Helmholtz instability of an incompressible homogeneous vortex sheet:
(a) Sketch of the roilup into spiral vortices. (b) Two spiral concentrations of vorticity calculated by
Krasny [66] with smoothing parameter 6 = 0.1 and 0.05.

sheet of strength k& grows like exp(nkr/A). The shorter the wave, the faster it grows
for a given sheet strength.

Theory Interacting with CFD

All the time during the development of CFD there has been a strong interaction
with the type of theory we have discussed above. Below we shall comment on a few
examples.

One area where the CFD-theory interaction has been very useful is in nonlinear
conservation laws, the most important example of which is (3.2). Let us consider
the simpler case of an initial-value problem for a hyperbolic system in one space
dimension:

0 0
T+ f@=0;  glx,0)=qo(x) (335)

The system is hyperbolic if the Jacobian matrix A(q)=3f/0q has real cigenvalues.
In order to account for discontinuities we allow weak solutions which satisfy
Eq. (3.5) in the sense of distributions [98]

f: fio [4.9+0.f(g)]dxdr+ f #(x, 0) go(x) dx =0. (3.6)

The weak solutions are not uniquely determined by their initial data and the
physically relevant solution has to be selected by some extra criterion. It is natural
to admit the solutions that are limits as ¢ —» 0 of

og 0 g
‘5!—+af(q)—gﬁ’ £>0.
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This formulation is close to the artificial viscosity method. In some cases it has been
shown that the condition above is equivalent to an entropy inequality: Assume that
the conservation law (3.5) possesses an entropy function Q{gq) such that Q is a
convex function of ¢ and

9Q of _or
0q dq dq

for some entropy flux F. Then limit solutions (3.6} satisfy the following inequality in
the weak sense

0 0
EQ(Q)‘FaF(Q)gO- 3.7

Discrete versions of the integrated form of this inequality can be part of the design
principles for numerical methods [94].

The existence of solutions to (3.5) was proved by Glimm [127] using the con-
structive random choice method. This algorithm is very close to the Godunov
method. (See Section 5 for these methods.) The random choice method in itself has
had a strong influence on the development of computational methods.

The nonlinear mathematical evolution of the unstable vortex sheet has been
sought for a long time. In 1931 Rosenhead [727] approximated the continuous dis-
tribution of vorticity in the sheet by a succession of 12 line vortices, and his
numerical solution in fact showed the smooth roll-up of the sheet around periodic
concentrations of vorticity. But Birkhoff [737 challenged this result as being incon-
clusive because his own calculations with 20 line vortices produced an irregular
sheet that became tangled and did not roll up smoothly. The difficulty has been
found to lie in the singular nature of the equations being integrated. Later
investigators have modified the point-vortex approximation in various ways to
alleviate the singularity [18]. After some finite time the sheet develops a cusp and
ceases to be analytic, and numerical evidence indicates that beyond this time the
point-vortex approximation does not converge as the number N of line vortices
increases. A very recent analysis by Krasny [66] significantly advances the
understanding of this problem. He introduces a smoothing parameter § that acts
like an artificial viscosity and effectively de-singularizes the equations of motion. By
carefully reducing the value of é and increasing N in a series of numerical
calculations, he has produced results indicating that the sheet rolls up into a well-
defined double-branched spiral (Fig. 8b). Outside of the core, the specific value of
the smoothing parameter ¢ has little effect. As § decreases, more turns of the spiral
appear within the core, but the size of the core itself does not change.

Striving to obtain a highly accurate solution to this singular problem may seem
academic, but there is belief now that such fundamental unstable phenomena may
play a role in the coherent large-scale vortical structures that arise out of the chaos
of turbulent flow [65, 68]. Representing turbulence as a superpesition of interacting
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vortices is not a new idea. Townsend [67] treated homogeneous turbulence as a
collection of vortex sheets and tubes. A thorough understanding of the basic
mechanisms then may help to sort out the more complicated situations. Krasny’s
work strengthens the argument that the vortex-sheet model of inviscid flow is a
worthy one for studying the problem of the turbulent mixing layer.

Before the time of computer simulations, the well-posedness of physical boundary
conditions was established for many of the equations of fluid dynamics. A bounded
domain is needed for the calculations and, if the domain is not bounded by physical
boundaries, computational boundaries have to be introduced. New conditions are
needed at these boundaries. Exterior flow in aerodynamics and limited-area weather
forecasting are a couple of examples. These types of problems inspired a new theory
of well-posedness of initial boundary value problems—the normal mode analysis
[128]. The analytical problem of well-posedness is transformed into an algebraic
problem. The theory only applies to linear problems but gives practical guidelines
also for nonlinear equations [181].

Consider the following example. A hyperbolic system of linear equations

%, 4%, g%, %o
ot Ox oy dz (3.8)

Q(xayal,0)=%(xay,z)§ 0<X<OO,

where a boundary at x =0 requires boundary conditions of the form

gV =59 +4q(y, z 1) (39)

The number of boundary conditions should equal the number of positive eigen-
values of 4. The vector ¢!’ contains the characteristic quantities corresponding to
these positive eigenvalues. If

A,20,i=1,.,r

-1 _ 33 .
TAT —dlag(;{z)’ {}Vl<o,i=r+1,...,d

then Tq = (41)), with ¢'* and ¢® having the dimensions of r and d —r, respectively.
A necessary normal-mode condition for well-posedness is that there is no
solution

g =exp(st + iw,y + iw,z) ¢(x)
w, and w5 real, real part of s >0
to (3.8) and (3.9) such that the L,-norm of ¢ is bounded. This gives algebraic

conditions on S. The necessary and sufficient conditions are somewhat more
complicated.
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It is not enough to have well-posed boundary conditions at the computational
boundaries. The new boundary conditions should imitate the free-flow solution as
much as possible. Several techniques with this aim have been proposed [62, 1297
The simplest type of free-flow boundary condition for the problem (3.8), (3.9) is to
choose S=0[62].

The theory for the numerical approximation of a partial differential equation has
been developed in parallel with the progress of CFD. The stability theory is a good
example, starting with the von Neumann stability condition. As a necessary con-
dition, a scheme must have bounded solutions when applied to the initial values
g’ = exp(2niowx,) for any real w, (4x>0). Different sufficient conditions for the
stability of the initial value problems for constant coefficient systems were derived
by Lax, Kreiss, and others (see Ref. [387]). Later Kreiss introduced numerical dis-
51pat10n in order to generahze the stab111ty theory to variable coefficients [1217].
This device is also verv useful in practice. The moderg theory of nseudo-differentia
operators which apply to variable coefficient partial differential equations has also
had an impact on the numerical stability theory. Lax and Nirenberg [1227 give

SULTTCICIIL CONUILIONS TOT VallapIC COCITICICNIL CaUuCIy PrODICINS Dascd On 4 Snalp j0TTH
of the Gérding inequality. In the last few years the convergence theory has been
extended to nonlinear problems with L -stability for monotone schemes and for
schemes that control the total variation norm (see Section 5).

Using the analytical theory as a guide for scheme design is at least as important
for the initial boundary value problem as it is for the pure Cauchy problem.
Stability theory that includes the boundary conditions has been developed based on
a discrete version of the normal mode analysis [617. Recently, the sufficient con-
ditions for stability have been simplified, thus improving the applicability of the
theory [1231.

When a differential equation describes solutions having widely different time
scales, it is said to be stiff. In a stiff problem the scales corresponding to phenomena
that may change rapidly cause difficulties in the numerical solution. Stability
requirements for explicit methods force the time steps to be impractically short.
Convergence of iterative methods for implicit schemes is in jeopardy. There are two
different types of stiff problems in CFD. In one, the fast scales are important and
affect the overall flow as in turbulence. The rapidly changing phenomena cannot
simply be eliminated. Their influence on the slow scales has to be modeled (see, e.g.,
Refs. [ 75, 78]). In the other type of problems, the fast scale does not in a substan-
tial way interfere with the slower scales. These fast waves can then be removed by
preparing the initial values, by filtering during the time evolution, or by modifying
the differential equations (see Ref. [124]). A good example of this type of problem
is in numerical weather forecasting. The waves of interest carry the weather patterns
and they travel much slower than the gravity waves. Another example is the Euler
equations in the limit of a vanishing Mach number. Acoustic waves then travel
much faster than velocity waves and make the computational problem badly posed.
Removing the fast waves that have little meaning to the problem restores its con-
dition for computing the solution. In the case of the Euler equations one deletes the
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density and replaces its time derivative with that of the pressure. This is the
artificial compressibility approach of Chorin [120] for steady incompressible flow
that gives the new hyperbolic system

dg [c* 0] @ B _| 71 |
E+|:O 1]5}f(q)_0’ whereq—{u],f(Q)—Lz_l_p}

that now has the pseudo-acoustic wave speeds u +./u” + ¢%. Choosing the free con-
stant ¢ to be the order of u produces a system with less variation in wave speeds
than the original physical system. (Sce also Ref. [111].)

4. DISCRETIZATION OF THE FLow DOMAIN

The overall goal of CFD is: Given a flow problem specified by particular boun-
dary conditions and sometimes also initial conditions, describe the solution as a
finite set of numbers distributed throughout the domain of the flow and obeying
some functional relationship among them based on some approximation derived
from the continuum equations chosen to govern the problem at hand. It is arrived
at by first projecting the continuum problem of the differential equations to some
finite-dimensional space for the dependent and independent variables and then by
solving the resulting discrete equations for the final set of numbers. When solving
the partial differential equations cast in the Eulerian formulation with reference to
some coordinate system, the first step in the projection process is to discretize the
domain of the flow by laying out a network of points situated at a finite number of
different locations of the independent variables, ie., to create a grid. The simplest
one is the regular Cartesian grid. The grid points (x, ,y,, z,) are given by x, = x, +
jax, y=yo+kdy, z=1z,+ [4z, and the approximation to the dependent variables ¢
at these grid points are here denoted by q,,. Let ¢, denote the time-dependent
approximation (g7, = q(x;, Vi, z;» 1), 1,= o+ nAt). The extension to variable step
size is simply (x, = xo + X, 4x,, etc.). Other extensions are discussed below based on
transformation of the independent variables. The location of the spatial grid points
may be time dependent as, e.g., in adaptive grid methods and Lagrangian grids. The
grid is called unstructured when it does not have the Cartesian form. These grids
are best used with finite element methods.

The computational algorithms are either explicit,

"' =G(q"); (4.12)
or implicit,
G(g"*', q")=0 (4.1b)

The vector ¢” consists here of all unknowns (g,,) at the time level n. (The index n
may also be the iteration number in a steady state computation). The accuracy
depends on the smoothness of the functions being represented and the density of
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grid points. It is usually analyzed on the basis of a Taylor series expansion from one
grid point to another. Thus it becomes a question of the resolution of scales in the
fluid phenomena in relation to the distance between grid points, ie., the mesh
length. The scales of the physical features in the problem may only be very broad,
on the order of the overall size of the domain, if the flow is laminar; but they also
may range from these broad ones down to the dissipation length scales if there are
boundary layers or instabilities in the flow and turbulence occurs.

Resolution of Scales

One way to increase the resolution of these scales, i.e., resolve more of the finer
scales, is to raise the complexity of the functional relationship between the depen-
dent variables evaluated at the grid points and thus improve the information con-
tent being passed from one point to another, that is to use a higher order numerical
method. Provided that the function over the grid points is smooth, this approach
does offer better resolution for a given number of grid points. But it also means a
more complicated algorithm that may demand more arithmetic operations per step
and more effort to implement on advanced computer architectures, and it therefore
may be less universal in its applications.

The other way to improve the resolution of fine scales with a given algorithm is
to increase the number or optimize the location of grid points in the independent
variables over which the dependent variables are evaluated. The length scale of the
phenomena resolved is thereby reduced in proportion locally to the mesh-length,
raised to the order of the approximating scheme for the differential equations. This
approach is particularly appropriate if the function being approximated is not
smooth. It involves no changes in the algorithm itself; instead, its drawback lies on
the hardware side because the computational problem grows in size, it demands
more memory, and the execution time increases. As partial relief to this, one tries to
optimize the distribution of grid points locally in order to maximize the resolution
in special regions of the flow. A long-standing example is the mesh aligned with, or
fit, to a solid-wall boundary. Here rapid gradients in boundary layers are known to
occur, and the region can be identified in advance. With a boundary-fitted mesh the
distribution of points is regular and it can be graded from a small size going out-
ward from the wall to match smoothly with a larger mesh size in a region away
from the wall. Tt requires no extra interpolation to set the boundary conditions and
thus enhances the efficiency of the computation. A further enhancement comes by
setting additional grid points into the mesh in a preselected local region. This local
refinement establishes a second grid distribution identified by interior boundaries
with its parent distribution across which the pattern of points may be smooth and
regular or irregular. Different interior boundary conditions may be needed in each
case.

When the region for grading or refinement cannot be identified in advance, some
form of intelligent decision-making has to be built into the algorithm in order to
sense the appropriate regions and then automatically to grade or refine the mesh.
Adding complexity to the algorithm, this adaptive strategy affords better efficiency,
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in general, for the resolution of fine scales. It comes closest in character to the
traditional concept of tracking or fitting a front or discontinuity and is more easily
implemented in an unstructured grid than in a structured one. Thompson [81] and
Eiseman [83] have recently reviewed the current status of this technique.
However successful all of the above procedures are, they still cannot hope to

racnhra tha vraro arnda cnantenimm Af cnalac that nrahlameo in flisid mmanhaning saracant

to follow the smallest eddies is on the order Re /% Rogallo and Moin [79] have
estimated that for a turbulent channel flow at the moderate Reynolds number
Re = 10* roughly 50 billion grid points and 2 x 10° time steps are necessary for the
flow to reach a statistically steady state. Hence for high-Reynolds-number problems
the hardware limitations of present and foreseeable future computers set a limit on
the scales that we can resolve, quite independently of the software. For problems
with such a wide spectrum of scales, the best we can do now is to try to take the
effect of the small scales into account by some form of analytical modelling built
into the algorithm representing, to some approximation, those scales smaller than
the smallest resolved on the mesh, ic., so-called sub-grid scale modelling. It is the
essence of turbulence modelling {75, 78, 79]. Its success presumably depends very
strongly on how much energy those sub-grid scales actually carry and how much
they affect the resolved larger scales.

Topology of Grid-point Patterns

In addition to the accuracy of the results, the overall efficiency of the com-
putational procedure also depends on the connectivity of the set of grid points. If
the size of a given mesh cell varies substantially in comparison with its immediate
neighbor, then a standard finite difference approximation to a first derivative, for-
mally accurate to second order O(4x?) on a uniform grid with spacing Ax, falls to
first-order accuracy. A finite-element approximation, however, can maintain its
accuracy under these circumstances but may lose its superconvergence properties.
Second-order accuracy is maintained for the standard finite difference
approximation provided the variation in size, ie., the smoothness of the cell
dialation, is 4x,=Ax,[1+ O(4x;)]. Apart from formal accuracy is the matter of
the diffraction of waves as they pass from a region of small mesh spacing to one of
larger spacing. The analysis of Browning er al. [80] indicates that if their
wavelength cannot be resolved on the coarse grid then distortion takes place.
Recent results obtained with locally refined grids suggest that the question of
diffraction caused by grid-size variation does not seem to be critical.

A pattern of grid points ordered regularly, including those on the boundaries,
simplifies the treatment of boundary conditions and reduces the overall com-
putational work because it lays the groundwork for efficient communication
between a cell and all its neighbors in the mesh. As we discuss later, this has impor-
tant consequences for actual computations using computers having vector or
parallel architectures. The smoothest and most regular patterns of grid points are
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those, according to Eiseman [83], that result from smooth coordinate mappings.
The simplest and most regular patterns in this class arise when the points are con-
nected only along coordinate directions, e.g., Cartesian grids. They minimize difrac-
tions because of their smoothness and provide a consistent structured pattern that
allows the neighbors of a given point to be identified in relation to each other. And
this information leads to more efficient computations because knowing it eliminates
having to compute the identity of the neighbors (indirect addressing). For vector
computing it means reduced movement of the data in order to achieve proper
alignment of the elements (gather/scatter commands).

Opposite to all of this are the so-called nonstructured grids that are commonly
used with finite-element methods. A nonstructured grid can be simply a collection
of points with no special order to them. The computational cell need not be a
hexahedron and the variation in size from one to another need not be smooth. But
because of the lack of inherent regularity, its neighbors must be identified through
the additional computational work of indirect addressing. In its favor, nonstruc-
tured grids are easier to construct, and local regions of refinement can be inserted
more naturally.

Consider the example of a simple wing-fuselage combination in Fig. 8. Single
mappings exist that relate a point P in the physical domain, specified by its rec-
tilinear coordinates x, y, z, to its image in the space of the computational data,

/’—\\ \\\
- PHYSICAL SPACE ~.
s ~

COORDINATE
COMPUTATIONAL TRANSFORMATION

SPACE l’

L7

Fig. 9. Single global mapping of the physical space to a body-aligned computational coordinate
space
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identified there by the coordinates &, n, { of its Cartesian grid. Through such map-
pings or coordinate transformations, one can produce regularly ordered and
smoothly varying grids most simply and naturally by selecting a uniform spacing of
points along each of the three Cartesian coordinates of the computational data. The
connectivity in the resulting pattern of points then is preserved under the transfor-
mation to its image in the physical space and thus yields the grid of points forming
a tessellation of hexahedral cells.

The differing types of grid patterns may be categorized according to characteristic
local irregularities in their structure, where a coordinate direction joins or departs
from a boundary or where two coordinate lines of the same family run together, ie.,
a coordinate singularity. Figure 10 displays the tessellations most often used for the
profile of an airplane wing. They can be seen as generalizations of the classical cur-
vilinear or conformal coordinates. Providing the best resolution on thick rounded
edges because they wrap around such features, the C and O types represent the
entire profile by all or part of one computational coordinate line which may contain
one or more singular points at sharp edges. The folding or wrapping of the transfor-
mation creates branch cuts which makes the mapped computational domain simply
connected. The H type treats the image of the airfoil as a slit in a section of one
computational coordinate. It yields a simply-connected grid but one with the
poorest resolution for rounded leading or trailing edges. Related to it but with

PHYSICAL SPACE COMPUTATIONAL SPACE
TYPE

Fic. 10. Some of the common coordinate mapping types for grids around an airfoil.
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somewhat better resolution for blunt edges, the L type represents the airfoil as a
combination of sections of computational surfaces belonging to different families. In
so doing it forms a cavity in the grid, and the computational domain is multiply
connected. Whereas the C and O tessellations are folded and contain singular
points (lines in three dimensions), the H and L types create corners in the com-
putational domain where none exist in its corresponding image in the physical
space. These so-called fictitious corners may be seen as a form of coordinate
singularity. Singularities, however, can be avoided entirely, but only by replacing
the singular quadrilateral cells with some other type of polygon and thereby break-
ing the consistency of the pattern. In CFD the common preference is to retain
consistency and accept the singularities.

In three dimensions Eriksson [86] describes the types of mappings suitable for
fitting meshes to closed surfaces. If a consistent pattern of quadrilaterals is main-
tained for the surface mesh, one or more singularities in the mapping appear on the
surface and persist out to the field mesh. Common types are polar and parabolic
singular points. Eriksson [88] has analyzed the effect that these singular lines have
in a numerical solution. He finds that a finite-difference scheme may lose stability at
such a singularity, but the finite-volume scheme remains stable although it suffers a
drop of about one-half order of accuracy.

The degree of geometrical complexity and detail that can be carried by the single
global transformation in Fig. 9 is of course limited. To go beyond its limitations
requires the flow domain be segmented into component sectors that together con-
stitute the whole. The sectoring is usually done to produce a subdomain of the flow
that a single coordinate transformation can represent adequately, thus achicving
regularity and connectivity within the constituent or component grid for that sub-
domain. Each component grid shares all or part of a sector boundary with another
component grid. The connectivity and smoothness in the pattern of points across
the boundary depends on how the component grids are joined together. Two alter-
natives are the simple butt joint or the overlap joint (Fig. 11), the latter demanding
more comphcated interpolation [92] In elther case the computational coordinates

not only on the accuracy and stability of the numerical solution but also on the
preservation of its conservation principle [91]. Viewed as a whole, the flow domain
then is discretized by an irregularly connected assembly of constituent grids or
supercells, each of which is a regularly connected pattern of individual com-
putational cells (Fig. 12).

Constructing the Supercell Grid

The discretization procedure we have described so far is a hybrid, because it com-
bines an unstructured arrangement of supercells, common in finite-element meshes
[85], with highly structured component grids within the supercells, usual for finite-
difference meshes (Fig. 12). Eiseman [83] and Thompson [84] describe two dif-
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Fic. 11. Two types of supercell junctions: (a) overlapping joint, and (b) butt or patched joint.
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Fi16. 12. Three constituent supercells comprising a boundary aligned mesh for wing-body-nacelle
model.
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ferent methods based on coordinate transformations to construct the structured
grid within the supercell. The solution of a system of elliptic equations provides a
formal theory for the general approach to grid generation pioneered by Thompson
[82]. On the other hand more specific algebraic methods when suitably implemen-
ted offer a means to construct very large meshes efficiently because their execution
time, usually, is almost independent of the mesh size. Either method requires the
tessellation of each of the six faces of the supercell. Some of these may be interior
surfaces or outer boundaries in the physical domain that do not require great
precision. They can be chosen as simple geometrical shapes upon which a surface
grid is laid out easily. Other faces that are physical boundaries can be very intricate
and require high precision. Constructing the surface grid then is not easy. First, the
surface itself must be defined in the physical space usually by a two-family tensor-
product parametrization into quadrilateral patches using either Bézier cubics or
splines, or some Coons-patch technique of spline-blended surfaces, e.g., transfinite
interpolation (Fig. 13). The data given to define the surface lies along the two-
parameter curves. It is most natural to use these curves as the computational
coordinates of the surface grid and then take some uniform or simple graded dis-
cretization of them. In some cases, however, this is inappropriate and an additional
transformation to a second set of two-parameter curves in the surface is needed in
order to define a suitable surface grid. The specific tessellation of the six faces of the
supercell determines the topology of its grid. The more complicated that topology
is, the more difficult it is to generate the required surface grids, particularly if the
surface has a general shape.

Once the grid is set on the six faces of the supercell, either an algebraic method
or a differential-equation solver can construct the grid in the interior. Both of these
have been reviewed extensively already [82, 84]. The algebraic technique we use is
transfinite interpolation, the theory of which is described by Gordon and Hall,
generalized by Gordon to match out-of-surface first-order derivatives which
Eriksson [86, 87] further developed up to third-order derivatives in order to
achieve greater control over the shape of the mesh lines. Let r{u, v, w)=
[x{w, v, w), (i, v, w), z(n, v, w)] denote a vector-valued function of three
parameters u, v, w defined on the six faces of the supercell in wu. v, w space,

A

X

Fic. 13. Two-family parametrization of a 3D surface.
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Uy KUK Uy, U KUKV, wy <Kw<w,. This function is not known in the interior of
the supercell. Its values and certain of the out-of-surface derivatives of r,

n

—r(ug, v, w)=2a{(v, w); k=1,2;0<n<3

a n

P —r(u, v, w)=b{"(u, w); k=1,2;0<n<3 (4.2)
—— (U, v, W) =¢{(u, v); k=1,2;0<n<3,

ow

are specified on the outer surfaces of the supercell u; <u<u,, v,<v<v,,
w; Sw<w, in u, v, w-space. To interpolate this data into the interior of the super-
cell requires a set of univariate blending functions,

wP(u);,  k=1,2; 0<n<3
M),  k=1,2; 0<n<3
y(w);,  k=1,2; 0<n<3,

which can be chosen to grade the mesh spacing, but they must satisfy the
conditions

m am m

0
™ o‘l(cn)(ul) = 5/<1 - 5nm; ﬁ(n)(vl) - 5k1 5nm: —8-14.7—- (n)(wl) 5k1 ) 5nm

The generalized tranfinite interpolation algorithm as formulated by Eriksson
[86, 87],

r(u, v, w)=

23: (n) u) a(")(v W)

n[\/JN

n

=1 (U, U, w)] 4.3)

r(u, v, w)=r(u, v, w

||M~

3
Y. [bw(u, w)—

w

an
ow”

(v, ) = Ea(1t, 0, W) + i T 1) [c<"><u, A, wk)],

then prescribes the function r throughout the supercell and defines a transformation
from the rectangular region u, <u<u,, v, <V<v,, w; <W<w, in u, v, w-space to
some arbitrarily shaped region in x, y, z-space with geometric data specified only on
the outer boundary of the parametric domain. After discretizing with a uniform
interval along each of the three directions of the parameter space u, v, w, algorithm
(4.3) then provides the image points in x, y, z space, ie., the grid then has been
constructed.
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Example Grids

Krouthén [178] has recently used the Eriksson transfinite interpolation techni-
que to construct a grid for the three-dimensional flow through a turbine-blade
passage. Figure 14 presents a view of this mono-cube O-H grid around such a
blade. In this application some of the outer faces of the cube have been sculptured
to meet the condition of periodic flow that is common for internal flows. Berglind
[90] has also adapted the technique to generate a mesh around an automobile
situated above the ground. His mesh is a three-supercube O-O grid with four
points having a $-type singularity (Fig. 15). Here he uses the surface normal vector
as the out-of-surface derivatives in the transfinite interpolation and calculates them
from the coefficients of the bi-cubic spline representation of the surface.

5. METHODS FOR HYPERBOLIC CONSERVATION LAWS

There are many ways to discretize the differential or the integral forms of the
hyperbolic conservation laws (3.2): finite difference methods, finite element
methods, spectral decompositions, and others. Each has its own particular set of
properties, but in most of them a solution of the continuous system is approximated
via some projection into a finite dimensional space determined by the grid that
spans the domain. We are concerned here with the problem of approximating a
nonsmooth solution to a nonlinear conservation law.

Most computational methods for partial differential equations are designed for
smooth solutions. In finite difference approximations, for example, divided differen-
ces replace derivatives. This approximation naturally gives large errors locally if
there is a discontinuity in the solution of the differential equation. The standard
convergence theory for finite difference and finite element approximations breaks
down if the analytic solution contains discontinuities. In fact, only certain types of
discrete approximations do converge to the correct solution as the step or element
size decreases.

Treatment of Shocks

Let us use a simple one-dimensional model equation in order to demonstrate the
options that are available in shock computations. Consider the inviscid Burgers
equation

d 0 5 0
i —f=F+— (D=0 q(x0)=go(x) (5.1)

with a step function as initial data

oL x<0

qO(x)={QR x>0 Q1> 0xr.
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This problem has a unique entropy-correct solution ¢(x,?) with shock speed

s=(Q0 +0r)/2,

O x<st
Ok X = st.

q(x, t)={

Assume that we want to represent the solution on a grid by an approximating
grid function ¢ ~u(x,, t,), x,=jdx, t,=nAt. We are now faced with the following
dilemma. If we want the numerical solution to be rather accurate around the shock,
the values of ¢/ must jump suddenly when the shock passes a grid point (see
Fig. 16). For those time-steps when the shock location only moves between two
grid points the numerical solution g should be essentially unchanged.

This cannot be achieved by a standard deterministic difference method. There is
no way for the method to know when to change the value at a grid point from gr to
a different ¢/’ "', when the shock passes x,, or when to leave the approximating grid
function unchanged for a time step. There are essentially three ways out. of this
dilemma. A pointer can be introduced to record the shock location, the location is
updated in every time step, and it triggers a change in the grid function whenever
appropriate. This is the so-called shock tracking or shock fitting method and it has
been used for a long time (see Section 2).

Another possibility is to make the change in the grid function averaged for the
correct number of times. If 4x=3s4r the shock passes a grid point in every third
time step. The change in the approximate grid function can be done on average
every third time when the algorithm is based on a random number. This is a
simplified version of the random choice method which first was introduced for
theoretical purposes by Glimm [1277]. It still is the method with the best theoretical
foundation.

Finally, we can give up on the sharp resolution of the shock and allow for 2
O(1)-error at a few grid points close to the discontinuity. This shock-capturing
technique was started by von Neumann and Richtmyer (see Section 2) and is now
the most common in engineering practice.

There are some other options, e.g.,, grid-free particle methods and methods of
Bolzmann type [95], but they have not so far had any greater practical importance.

QL

QR A

x}' -1 xl X }1 X

F1G. 16. One-dimensional example of shock capturing.
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(i) Shock tracking. In this classical procedure the shock surface is treated as
an interior boundary of discontinuity. The evolution of the surface is governed by
the Rankine-Hugoniot conditions. We discussed the method in connection with the
blunt-body problem in Section 2 and we shall here only note some advantages and
disadvantages as compared to shock capturing.

The difficulty with shock tracking is that the structure of the discontinuities and
their interaction must be known or anticipated. Special sets of pointers must track
each discontinuity and the programming becomes complicated. For new
phenomena, new mathematics is needed. The latter may be desirable, however, even
if a lot of work is needed since it may give new insight into the problem.

These difficulties are behin