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Computational fluid dynamics (CFD) is a large branch of scientrlic computing that lately 
has undergone explosive growth. It draws upon elements from related disciplines: fluid 
mechanics, numerrcal analysis. theory of partial differential equattons, computer science, and 
computational geometry. By selecting certain topics we try to trace the way the dramatic 
growth came about and to illustrate the interplay of the related disciplmes The scope is broad 
and the emphasis is on drscussing the underlying fundamentals m order to present an overall 
perspective on CFD. The focus is on the evolution of nonsmooth features m invisctd flows. 
primarily macroscale discontinuitres hke shock waves and vortex sheets admitted as solutions 
to the Euler equations, but also with some view to their possible unstable progression into 

small-scale features, ending ultimately in turbulence. Some of the current finite-difference 
methods, and the theory they are based upon, which are used to treat these problems are 
reviewed, and different grid generation techniques are introduced. Together with some prm- 
crples for using advanced supercomputers, we also drscuss how the methods are implemented 
on these machines. A number of computed results, some of them new and of large scale aith 
up to one mullion grid points, are presented which reflect the limits of the theory and the 
current status of the field. lc’ 1987 Academic Press, Inc 

1. INTRODUCTION 

Computational fluid dynamics (CFD) is the science of producing numerical 
solutions to a system of partial differential equations which describe fluid 
CFD is done by discrete methods and the purpose is to better understand 
qualitative and quantitative physical phenomena in the flow which then is often 
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used to improve upon engineering design. It is a branch of scientific computing that 
has recently altered the traditional interplay between the two arms of classical con- 
tinuum mechanics-mathematical analysis and experiments in the laboratory. 
Although very successful when applied to linear problems and some special 
phenomena, these two traditional disciplines alone have been stymied on the dif- 
ficult nonlinear problems. On these problems CFD joins together synergetically 
with both analysis and experiment and allows us to actually see the nonlinear 
phenomena, to come to a better understanding of its essential structure, and in turn 
to suggest previously unthought of ways to build that particular feature into an 
improved analytical model. Thus progress is made. CFD brings together a number 
of different traditional disciplines: fluid mechanics, the mathematical theory of par- 
tial differential equations, computational geometry, numerical analysis, and the 
computer science of programming algorithms and processing data structures. 
Among other things in this review, we try to bring out the interplay of these live 
fields that comes about when solving fluid-flow problems by numerical methods. 
Above all we find that it is the utilitarian demand for practical solutions together 
with the appearance of more and more powerful computers to carry out the com- 
putations that drives forward the development of CFD. In addition, the increasing 
number of supercomputers that are bought for this application is an indication of 
its growth. 

The purpose and scope of this paper are not those of an encyclopedic review of 
all that has been done; instead we paint a picture of CFD with broad strokes in 
order to present an overall and personal perspective of the field. All the topics 
touched upon here cannot be delved into in detail, but we do discuss some at 
greater length than others in order to explain some fundamental underlying prin- 
ciples and to bring out the synthesis of the various disciplines. The applications 
come mostly from aerodynamics, the field we know best, and not from hydrology, 
marine hydrodynamics, meteorology, or combustion. In the final analysis it is more 
like a personal view of what we think have been significant aspects in the develop- 
ment of CFD. Other points of view have been expressed in surveys by Krause 1551, 
Shang [54], and others [76, 81, 83, 23, 25, 521. Also the foundations upon which 
the whole field is built, are now reasonably well covered in text books [34, 74, 38, 
37, 69, 71, 84, 140, 141, 6, 77, 177-J. 

A large class of fluid problems can be categorized as smooth flows for which no 
discontinuities or fronts, of either large or small scale, appear. Many problems of 
incompressible and irrotational flow governed by elliptic equations, which are often 
linear, are in this class. Usually there is no difficulty in obtaining a good numerical 
solution. The current research in this field now tries to reline the solution methods 
to make them converge faster and perform more effectively. In contrast to these are 
nonsmooth flows for which the governing equations are usually hyperbolic and 
always nonlinear. Nonsmooth features include shock waves, vortex singularities, 
and turbulence. Shocks are large-scale phenomena and inherently stable structures. 
Underway for four decades, their study by numerical methods is in a mature, but 
still very active, phase. Flows with vortex singularities also have long been under 
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study but, unlike shocks, these large-scale features are inherently unstable an 
to ill-posed mathematical problems. Progress therefore has been slower. A r 
ing unsolved problem of fluid mechanics, turbulence, is the ultimate nonsmooth 
flow. Here instabilities occur on many scales although, in some sense, average 
quantities may be stable and coherent large-scale features may evolve. The interplay 
between the large-scale and small-scale motions dominates the problem, an 
idea of turbulence modelling is founded on the belief that the effect of the small 
scales on the large scales can be modelled in a simpler way than computing them 
completely. 

From this very broad scope of problems, our personal choice is to focus on the 
treatment of nonlinear phenomena in fluid mechaniics with the emphasis on the 
growth of nonsmooth macroscale features like shock waves, fronts, and vortices. 
along with some discussion of microscale features that evolve from vortex-sheet 
instabilities. We are primarily concerned with the appearance of such p~e~Qrne~a in 
the solution to a system of evolutionary hyperbolic equations, and therefore we 
concentrate mostly on nonlinear advection in the context of the Euler equations, an 
appropriate model of flows with negligible viscosity. Discontinuous or nearly dis- 
continuous flows have been sources for many new ideas in GFD and they are ideal 
examples of the benefit of the theory-application interaction. In connection to 
these problems we shall discuss the effect of geometry on boundary conditions and 
the computational mesh and also the impact of different computer env~~o~~e~ts. 
The following illustrations serve to visualize the types of phenomena we are 
interested in. 

Shock- Watle Interactions 

Figure 1 is a shadowgram of a shock wave traveling to the right an 
around a protruding edge [l]. There is a reflected shock that intersec 
original shock producing a Mach stem and a contact discontinuity at the so-called 
triple point. The flow also separates from the edge in a vortex sheet that soils up 
into a nearly circular spiral due to the Kelvin-Helmholtz instability and forms 
an edge vortex [22]. The flow is supersonic and a lambda shock appears due to 
the acceleration along the start of the vortex sheet. The spiral seems to ingest the 
contact discontinuity which is a rather stable feature. 

Finite amplitude discontinuities can also occur on the surface of an incam- 
pressible fluid under the influence of gravity, e.g., river flow. If one restricts atten- 
tion only to waves that are long in relation to the depth of the river, one develops 
an inviscid theory for shallow water. Stoker [2] draws the analogy between the 
resulting shallow-water equations and the Euler equations of compressible Row. In 
this context the Froude number, the ratio of the inertial force to the force of 
gravity, plays the same role as the Mach number. Under certain conditions and 
riverbed topography, the Froude number becomes greater than one, and surface 
waves can break and form a hydraulic jump or tidal blare 13, 51. The evolution of a 
discontinuity like this one, by breaking, has been an intriguing and lQng-standing 
problem of water-wave theory. 
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FIG. 1. Shadowgram of shock wave rcflcction and diffraction around a salient edge producing 
the rollup of a spiral vortex sheet [ 11, 

Vortex Dynamics 

When one stream of fluid flows faster over a second stream, a discontinuity in 
tangential velocity, called a vortex sheet, exists across the interface of the two fluids. 

It is linearly unstable to infinitesimally small perturbations; this is the classical 
Kelvin-Helmholtz instability. In the case of two superposed streams of water, Fig. 2 
depicts how a sinusoidal disturbance at the most unstable frequency grows 
downstream from left to right into spirals that eventually pair into a structured vor- 
tical formation sometimes called Kelvin’s cat’s eyes [ 141. It is thought that studying 

the development of coherent structures like this may lead to a better understanding 
of the turbulent mixing layer, jets, and wakes. 

We also find such spiraling motions in other situations. When two confluent 

FIG. 2. Kelvin-Helmholtz instability of vortex sheet in incompressible flow. The faster stream, 
above a slower stream moving to the right, is perturbed sinusoidally and illuminated in laser light [14] 

(reprinted with permission). 
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streams meet a salient edge, they may separate from it in a shear layer (vortex s 
in the limit of zero viscosity). Under the influence of its own vorticity, the sheet 
rolls up dynamically into a spiral vortex. The spiral itself, however, is only weakly 
stable, and its stability decreases when subjected to disturbances of decreasing 
wavelength [ 16, 171. It can be categorized as a form of Rayleigh instability because 
its velocity profile contains an inflection point (see Ref. [7, p. 1311). If a short~wave 
disturbance causes the sheet to kink, the sheet folds over on itself and then rolls up 
into a spiral vortex. The shadowgram photograph by Pierce [S] (Fig. 3) shows the 
shear layer in a low speed flow separating from a sharp-edged plate and coiling into 
a spiral. It also shows a number of small disturbances superposed on the layer caus- 
ing it to fold and roll up into so-called ornamentation vortices, creating a hierarchy 
of coils upon coils. These grow larger as the parent coil spirals inward, ending in a 
disordered core. A similar unstable spiraling is just visible in Fig. 1. 

If a low-speed stream flows past an edge at incidence that is swept 
respect to the stream, as in the case of a delta wing, a stable and steady spiral v~r- 
tex is shed from the leading edge. As the angle of attack is increased, however, a 
dramatic event can take place at some position along the axis of the vortex where 
its ordered structure breaks down. From a strong tightly bound spiral motion 

FIG. 3. Shadowgraph in which vapor released from the salient edge accelerating rapidly upwards 
through air shows the instability of the spiraling vortex sheet [8] (reprinted with permission). 



FIG. 4. The bursting of leading-edge vortices in water. The two streaks of dye are at the center of 
strong vortices shed from the sides of a delta wing [lo] (reprinted with permission of Controller, 
HMSO). 

FIG. 5. Shadowgram of shock-induced vortex bursting on a delta wing’ mounted.in a wind tunnel, 
M, = 1.1 and E = 14” 1211; B: bow shock, S: trailing edge shock, V: vortex (courtesy FFA). 
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upstream (Fig. 4), the flow suddenly decelerates along the axis. The core itself then 
begins to spiral with lower velocity in expanding loops, and it eventually decays 
into large-scale turbulence [lo]. There is still no comprehensive theory that 
accounts for all of the details of vortex bursting. 

At high speeds, furthermore, a shock wave encountering a vortex can also trigger 
bursting. Figure 5 shows an example of a delta wing mounted in a wind tunnel that 
meets a supersonic stream M, = 1.1 at 14” incidence [21]. The vortex core over 
the wing is tightly wound until it interacts with the oblique shock at t 
edge of the wing where it bursts, grows larger in diameter, and becomes turb~~~~t. 

/dfier- Body Flow 

All of the phenomena we have shown so far are relatively insensitive to the effects 
of viscosity. In high-Reynolds-number flows these effects are felt in thin layers 
adjacent to solid walls. When the body in a supersonic stream is blunt, as the 
sphere in Fig. 6, the flow expands around the flanks of the body where a recom- 

FIG. 6. Shadowgram of supersonic flow around a sphere in free-flight at M, = 1.53 showing shock 
waves and the fluctuating turbulent wake (Photograph by A. C. Charters, Ref. [20]; reprinted with per- 
mission). 
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pression shock causes the boundary layer to separate and creates a free shear layer 
between the outer flow and the wake of the body [20]. Further downstream this 
shear layer grows progressively unstable and the wake becomes turbulent. Follow- 
ing the contour of the wake, the outer flow has to turn through a series of 
compression waves that coalesce into a shock. 

Outline of the Review 

The review begins by first sketching the origins of CFD, and pointing out some 
of its recurring themes, then we lay down some of the essentials of the mathematical 
foundation for numerical solutions to hyperbolic equations and describe the means 
by which one can discretize the domain of the flow. The discussion goes on to sur- 
vey various approaches for approximating the continuum problem of hyperbolic 
conservation laws and for obtaining a finite-dimensional solution to them using 
advanced supercomputers. We conclude with a section presenting computed 
solutions, some of them of very large scale, to indicate the current status of what 
can be done numerically to simulate nonsmooth features in fluid flows. 

2. ORIGINS AND THEMES OF CFD 

The period from the time of discovery of the basic equations by Euler and by 
Navier and Stokes up until the beginning of this century may be called classical in 
the sense that fundamental and analytical solutions were being sought. One can 
perhaps mark the beginning of the CFD era to 1917 when L. F. Richardson [26] 
attempted to integrate the meteorological equations numerically (by hand) in order 
to make the first numerical weather forecast. He started this during spare moments 
as an ambulance driver at the front during World War I. Although CFD really 
began in earnest in the 1940s his work is significant because it embodies the spirit 
of CFD which is driven by the need to obtain an answer to a practical problem. In 
addition, he already envisioned the power of parallel computing and was earnestly 
advocating numerical weather forecasts to be carried out by 64,000 computers 
working in parallel [27]. In that day, of course, a computer was a human being. 
His attempt to integrate the meteorological equations was unsuccessful because of 
the limited theoretical understanding of the stability of the numerical method, poor 
initial conditions, and the lack of a computing machine to carry out the com- 
putations on a larger scale. Still it was a landmark event because by its failure it 
underscored those areas of the numerical theory that needed to be developed 
further. And this is a theme that we find occurring over and over again in CFD-an 

attempt to compute a solution to a practical problem meets with less than complete 
success because of limitations in the fundamental theory, which in turn prompts 
theoreticians to work to advance the theory further. 

After Richardson’s shortcoming, the focus fell back to more linear models of the 
problem. During the 1930s a strong practical impetus to CFD came from the fledgl- 
ing airplane industry which needed a means to incorporate the theory of flight into 
its understanding and design of airplanes. In those days that meant flight at slow 
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speeds; viscosity and vorticity were neglected, and the flow model was the Laplace 
equation. Based on the theory of complex variables, the approach taken was 
analytical, the superposition of elementary solutions [28]. As the aerodynamic 
shapes under investigation grew more complex, it matured in later decades into the 
computational singularity techniques called boundary integral, or more commonly, 
panel methods [43]. Viscosity was accounted for by solving the boundary-layer 
equations of Prandtl’s theory using finite-difference methods and mecha~~eal 
calculating machines [29]. Later there were also attempts, in an iterative fashion, 
to couple together the external potential flow with the boundary-layer solution. The 
relaxation method was also being applied to solve the Laplace equation by finite 
differences [ 59 ]. 

Meanwhile the mathematicians like Hadamard, Courant, and Friedrichs, were 
building the theory of hyperbolic partial differential equations, with the goal of 
understanding fundamental issues like the well-posedness of the problem, the 
propagation of waves, the smoothness of the solution, and its uniqueness. 
work on establishing a fundamental result on uniqueness that led Courant, 
Friedrichs, and Lewy to their famous stability condition, not the analysis of a prac- 
tical computing method [31]. A fundamental mathematical result that later is 
incorporated into a computing method is another theme of CFD. 

During the 1940s however, the two groups, the theoreticians and the prac- 
titioners, began to draw closer together. The advent of the jet plane, supersonic mis- 
siles, and high-energy blast waves brought demands: for solutions to practical 
problems that went beyond the reach of methods based on the current theory of 
potential and linear hyperbolic equations. The heart of the difficulty was the 
numerical treatment of the nonlinear occurence of shock waves. This instigated a 
large effort by von Neumann, Richtmyer, Lax, and others working closely with 
computing methods to establish a mathematical theory of nonlinear hyperbolic 
conservation laws for the purpose of computing flows with shocks. (The book by 
Fox [30] reflects how far these efforts progressed during the 1950s.) 

But because many of the transonic and hypersonic problems in aerodynamics are 
steady, the aeronautical community did not immediately embrace the newly emerg- 
ing hyperbolic methods. Instead, as was commonplace during the earlier decades, 
special methods were sought to solve the specific nonlinear steady problem. The so- 
called blunt-body problem is a good example [49]. When a blunt obstacle travels 
through air at a constant supersonic speed, a shock wave appears in the flow, 
termed a bow shock because it stands detached from and ahead of the bo 
goal is to predict the location of the bow shock and the flow properties between it 
and the body, then the appropriate model is the steady Euler equations. Except in a 
small region between the body and the shock, the speed of the flow is always super- 
sonic. This subsonic pocket is what characterizes the problem and makes it dificult 
because the equations are of mixed type--elliptic within the pocket and hy~e~b~~~c 
outside, where the flow is supersonic. No general mathematical theory has been 
proposed to solve mixed-type equations, but a number of special methods were 
devised in the late 1950s to solve, specifically, the blunt-body problem. Among 
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them were Van Dyke’s inverse method [42], that first assumed a shape for the bow 
shock and performed an unstable but controllable numerical march from it inward 
to determine the corresponding body shape and then adjusted the shock shape until 
the desired body was obtained. Another one was Dorodnitsyn’s method of integral 
relations which reduced the problem to a set of ordinary differential equations [32, 
331. All of these specialized blunt-body methods, however, were restricted to flows 
at substantial supersonic speeds. The other important aerodynamic problem of 
mixed type, the case of subsonic but supercritical flow past an airfoil, where a 
supersonic pocket is embedded in a subsonic field could not be solved satisfactorily 
by these methods. The solution of the transonic airfoil problem was first obtained in 
1970 by the relaxation procedure of Murman and Cole [97] for the nonlinear 
small-disturbance potential equation and was the initial use of an upwind scheme in 
aerodynamics. Oswatitsch and Zierep [53] present a good survey of the methods 
being used up to 1975 to solve transonic aerodynamic problems. For a later 
account see Jameson [52]. 

For truly time-varying flow problems, however, practitioners of CFD, primarily 
in fields other than aerodynamics like meteorology, plasma physics, and geophysics, 
were beginning to apply the theory that the mathematicians had been laying down 
for hyperbolic evolutionary equations [30, 311. By now the development of the 
theory had advanced from purely linear problems to the understanding of weak 
solutions to conservation laws. During the 1960s news of the success with the 
general time-dependent hyperbolic approach in these other fields spread to the 
aerodynamics community where it was adapted for the solution of steady flows. 
The idea was to integrate the unsteady hyperbolic full potential and Euler 
equations forward in time, while maintaining steady boundary conditions, as all the 
transient fluctuations began to disperse, until the steady state was reached 
asymptotically. Although it demands more arithmetic operations, the resulting 
time-asymptotic method proved to be both more effective and applicable to a wider 
class of problems than any of the other more specialized methods, e.g., the blunt- 
body procedures. This conclusion came about in part because of the broad latitude 
for algorithm modification afforded by the underlying hyperbolic theory. Another 
factor was the newly developed stability theory for difference approximations of 
time-dependent partial differential equations by Lax, Kreiss, and others (see 
Ref. [38]). Perhaps an even greater influence on the development came from the 
increasing computer power which became generally available at that time. This 
meant that additional computational work was no drawback. The supercomputer 
of its day, the Control Data 6600, appeared in 1964 with the power of 1 Mflops (1 
million floating point operations per second). It was followed by the 7600 in 1968, 
offering 4 Mflops. And if the user was willing to program with special assembly- 
language techniques, the performance of these two machines could be doubled to 2 
and 8 Mflops, respectively. Here then is another recurring theme of CFD: If there 
are computing machines readily available that can carry out the calculations in a 
reasonable period of time, it can be more feasible to use a more straightforward 
method built from a general theory, even though it requires more computational 
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work, than to use a more detailed method based on a narrower theory with limited 
application. The blunt-body problem with its various methods is a case in 
Rusanov [48-501 and Moretti and Abbett [41] were pioneers of the time- 
asymptotic approach for the blunt-body problem which now is used almost t 
exclusion of all specialized methods in aerodynamics. The need to study the 
patterns around the space shuttle was one of the driving forces in the development 
of this technique, and led, for example, to the first application of the finite-volume 
method to the blunt-body problem by Rizzi and Inouye [157]. 

With the formulation of the problem decided, the debate in the 1970s then 
centered on the treatment of shock waves. Traditional thinking suggested th 
discontinuity exists in the flow, it should be treated as an internal boundary. 
the shock is located, appropriate boundary conditions can be prescribed across it, 
and then the regions of smooth flow on either side can be handled with well- 
established methods. The concept is one of tracking or fitting the shock by s 
features of the algorithm to the surrounding flow. All the blunt-body methods of 
the 1970s treated the bow wave in this way because it can be intense and yet has a 
simple geometry that is easy to track. Based on the prior theoretical and com- 
putational work of von Neumann, Richtmyer, and Lax, the alternative concept was 
to disregard the shock as an internal boundary and instead compute the entire flow 
as an approximate weak solution to properly formulated conservation laws, often 
called the shock-capturing approach. Among others, Rizzi and Bailey [SS] took a 
hybrid approach in the study of hypersonic flow past the space shuttle at M, = 20 
and a = 40”. Using the split MacCormack scheme in finite-volume form: they 
tracked the bow wave but captured all of the other weaker shocks that develop 
around the canopy and wing leading edge at this high angle of attack. Although 
largely successful, this concept of capturing a shock does produce, in practice, small 
but unwanted side effects like anomalous oscillations in the solution near each side 
of the discontinuity. Such effects have in turn spurred the theoreticians to formulate 
entropy conditions, in order to obtain the correct jumps in the solution, and to 
refine the details of the differencing scheme, in order to avoid the undesirable 
oscillations. These theoretical endeavors to capture s,hock waves with more and 
more accuracy continue under lively development today, as we describe in 
Section 5. 

Propelled by the current crop of supercomputers, of which the first was the 
CRAY 1, these hyperbolic methods for nonlinear conservation laws are being 
applied now to simulate a host of nonsmooth Row phenomena including fundamen- 
tal macro-scale structures like shock waves, vortices, and wakes, as well as complex 
interactions involving shock waves and boundary layers, shock waves and vortices, 
thermal heating layers, base flows, vertical instabilities, and transition and the onset 
of turbulence. As their predecessors did in the past, these demanding practical 
applications today are going beyond the frontiers of the existing theory and thus 
are helping to motivate further theoretical work to move them ahead. Examples are 
the recent attempts to capture vortex-sheets in numerical solutions and to compute 
unstable flows, i.e., to solve ill-posed mathematical problems. 
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We aim to survey some of the current advancements in the development of 
evolutionary hyperbolic methods for nonlinear conservation laws, particularly as 
they apply to the treatment of flows with nonsmooth structures. This means prime 
attention is directed to the purely inviscid nonlinear advection problem as 
embodied in the Euler equations. In keeping with the themes culled from past 
developments sketched above, we illustrate how theory and practice go hand in 
hand in current work and how advanced computer architectures and improvements 
in the hardware may favor the application of one or another numerical algorithm. 
Our sketch of the origins of CFD indicates that practically ail of the past develop- 
ments were made in the context of the finite-difference method for numerical 
approximation. More recently, of course, other approximation schemes have come 
forth, notably the finite-element method, discrete vortex methods, and the spectral 
method, which in many applications do offer properties superior to finite differen- 
ces. But for illustrating the treatment of nonsmooth phenomena, the framework of 
finite differences or, closely related to it, the finite-volume method is still a good 
context, since it is there that much of the theory is being advanced. 

3. MATHEMATICAL FOUNDATIONS FOR NUMERICAL SOLUTIONS 

This section summarizes some of the elements of the mathematical foundation for 
the numerical solution of nonlinear hyperbolic conservation laws that are essential 
for our discussion. It falls naturally into two parts, the first contains the theory that 
was developed before CFD came into full play and the second, the theory that was 
nurtured by the requirements for CFD to move ahead. 

Pre-CFD Theory 

Most of the mathematical models that are used in today’s computational fluid 
dynamics were already derived before it started. There are many examples: the 
Navier-Stokes equations, the compressible and incompressible Euler equations, 
potential equations, etc. The basic properties of these equations that we know 
today were also to a large extent known before CFD began. The best presentation 
of relevant mathematical theory for fluid dynamical applications before the CFD 
period is probably the second volume by Courant and Hilbert, “Methods of 
Mathematical Physics” [4]. 

The design of computational methods for fluid flow has benelitted a great deal 
from this early theory. The concept of well-posed equations had been established. It 
is essential in numerical simulation that the solution depends continuously on the 
data. Equations were classified into hyperbolic, parabolic, and elliptic types, by 
their individual properties. The finite signal speed for hyperbolic equations and the 
infinite speed for parabolic and elliptic problems are essential to the construction of 
appropriate computational algorithms. So are the high regularity in elliptic and 
parabolic problems and the lack of regularizing mechanisms for hyperbolic 
problems. The variational formulations are fundamental for finite element methods. 

Although some applications call for a fluid-particle approach and, hence, a 
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Lagrangian description of the flow, our discussion concerns only the field represen- 
tation of fluid phenomena, and therefore we work with the Eulerian formulation of 
the equations. The most general continuum model for fluid flow is t 
Navier-Stokes equations 

ap %+divpv=O 

apv at + div(pvv +pI) = pg + div ,UZ (3.1) 

$+div(e+p)v=pg-v+div(hgrad T+,LN.~) 

represent the conservation of mass, momentum, and total energy per unit volume 
where z = - $ I div v + grad v + gradT v is the momentum flux density tensor due to 
friction. The symbols p, p, T, and v stand for the mass density, the pressure, the 
temperature, and the velocity of the fluid, while ,U is the molecular viscosity coef- 
ticient, K is the molecular thermal conductivity, g is the body force per unit mass, 
and I is the identity tensor. The divergence term on the left side of the momentum 
equation accounts for the reversible transfer of momentum while the one on the 
right side is the irreversible transfer. Additional equations must be given to relate 
the thermodynamic variables and coefficients in order to close system (3.1). 

The mathematical analysis of system (3.1) unfortunately has not been entirely 
satisfactory. The behavior of these equations is parabolic in those regions where 
viscosity has a significant effect, primarily near wails and in wakes, and it is hyper- 
bolic in the remaining regions. As a system the equations are termed incompletely 
parabolic and no simple boundary conditions are known in advance to lead to a 
well-posed problem in general for the differential equations [70]. The situation is 
even more uncertain for the discrete problem because a numerical solution requires 
that additional boundary conditions be specified. The pressure and temperature at a 
solid wall must be specified and some conditions must be set at the artifical boun- 
dary in the far field where the flow enters or leaves the domain. Today there is no 
agreement on how these conditions should be best specified. Nor is the stability 
condition for the time integration of system (3.1) thoroughly understood. This 
uncertain state of affairs is one of the factors that has led theoreticians to consider 
simpler subsystems. 

One natural, still having much practical interest for the study of shock waves and 
vortex sheets, assumes that friction and heat conduction are negligible, i.e., p, K = 0, 
and results in the Euler equations 

$+divpv=O 

apv dt + div(pvv +pI) = pg 

de 
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It is assumed then that vortex sheets form whenever an inviscid fluid flows 
around a body having a sharp edge or corner, so that the velocity of the fluid 
remains finite at the edge and the vorticity is convected away from it. Rigorous 
proofs that such flows are in fact the limit of the laminar flow of a real fluid as its 
kinematic viscosity vanishes have not yet been given, but experimental evidence and 
heuristic theoretical arguments do support the assumption and there is no reason to 
doubt it [9]. 

In addition to the implications for the physics, this assumption has broad 
mathematical consequences. All of the second-order derivatives vanish, and the 
system (3.2) becomes completely hyperbolic with fewer boundary conditions to be 
specified, and their analysis is somewhat simpler, too. But it also means that sharp 
gradients in the solution, which could have been supported by the second-order 
terms across thin transition regions, now steepen and may ultimately break and 
form a finite-amplitude discontinuity. This can come about from the interaction of 
gravity waves, as in the case of tidal bores in shallow-water theory, or from the 
interaction of acoustic waves building up to shocks. To study the latter, we drop 
the body force and cast Eqs. (3.2) into their integral form with respect to an 
arbitrary volume v in an inertial frame 

where 

Derivatives of the dependent variables q may be undefined in the interior of the 
volume but their values on each side of a surface of discontinuity, which may move 
with velocity W, must satisfy the so-called Rankine-Hugoniot jump relations 

Cd% - WI1 = 0 
CP%(% - WI +PI = 0 

IIPt(U, - w)l = 0 

[IeCu, - w) +P,I = 0, 

(3.4) 

where the square brackets indicate the difference between the values of any quantity 
[b] = & - 4, on the two sides of the surface and the subscripts y1 and t represent 
the velocity components normal and tangent to the discontinuity [49]. Equations 
(3.4) constitute a complete system of boundary conditions at a surface of discon- 
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tinuity. Two types are possible. If the mass flux is nonzero it is a shock wave and 
satisfies [o,] = 0. 

If there is no mass flux through the surface v,, = vn2 = M’, another possible solution 
to Eqs. (4) is continuous pressure [p] = 0, but the density and tangential velocity 
may jump by any amount [p] #O and [v,] #O. It is called by various 
names-tangential discontinuity, slip line, or vortex sheet. We prefer the latter 
because the shear in the velocity means that the surface contains vorticity (see 
Fig. 7). The discontinuity in velocity is the strength of the sheet k = n x (vr - vZ)? a 
vector parallel to the sheet. A degenerate case is when u,, = u,, but [p] # 0 and is 

- usually called a contact discontinuity. It is neutrally stable. 
Shock waves are basically stable structures [3] whereas vortex sheets are 

absolutely unstable. Consider first the classical case of the Kelvin-Helmholtz 
instability for two parallel incompressible streams in shear (Fig. 8a). The interface 
between the two, the vortex sheet, is linearly unstable and will degenerate into a 
series of vorticity concentrations if the slightest disturbance is present. It is easy to 
see the forces that bring this about (Fig. 8a). A wave in the sheet causes a constric- 
tion of streamlines around the crest, with a corresponding increase of velocity and 
decrease of pressure, while on the opposite side of the sheet the streamlines diverge. 
the velocity decreases, and the pressure increases. A pressure gradient therefore 
arises that deflects the sheet in the direction of the arrows in Fig. 8a and amplifies 
the initial perturbation. In another explanation of the physical mechanism, 
Batchelor (p. 51.5 of Ref. [19]) traces the vorticity dynamics using the fundamental 
properties of convecting vortex lines. A linear stability analysis (p. 20 of Ref, [7]) 
shows that an infinitesimal disturbance of wavelength J. on a plane infinite vortex 

UPPER VELOCITY 

VELOCITY PROFILE 

FIG. 7. The vortex sheet, a stream surface with a discontinuity m tangential veiocity 
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a 

b 

FIG. 8. The classical Kelvin-Helmholtz instability of an incompressible homogeneous vortex sheet: 
(a) Sketch of the rollup into spiral vortices. (b) Two spiral concentrations of vorticity calculated by 
Krasny [66] with smoothing parameter 6 = 0.1 and 0.05. 

sheet of strength k grows like exp(nkt/n). The shorter the wave, the faster it grows 
for a given sheet strength. 

Theory Interacting witti CFD 

All the time during the development of CFD there has been a strong interaction 
with the type of theory we have discussed above. Below we shall comment on a few 
examples. 

One area where the CFD-theory interaction has been very useful is in nonlinear 
conservation laws, the most important example of which is (3.2). Let us consider 
the simpler case of an initial-value problem for a hyperbolic system in one space 
dimension: 

The system is hyperbolic if the Jacobian matrix A(q) = af/aq has real eigenvalues. 
In order to account for discontinuities we allow weak solutions which satisfy 
Eq. (3.5) in the sense of distributions [98] 

The weak solutions are not uniquely determined by their initial data and the 
physically relevant solution has to be selected by some extra criterion. It is natural 
to admit the solutions that are limits as E -+ 0 of 

~++J(q)=-E$; E > 0. 
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This formulation is close to the artificial viscosity method. In some cases it has been 
shown that the condition above is equivalent to an entropy inequality: Assume that 
the conservation law (3.5) possesses an entropy function Q(q) such that Q is a 
convex function of 4 and 

aQ af 8F -.-=- 
a4 a4 a4 

for some entropy flux F. Then limit solutions (3.6) satisfy the following inequality in 
the weak sense 

Discrete versions of the integrated form of this inequality can be part of the 
principles for numerical methods [94]. 

The existence of solutions to (3.5) was proved by Glimm [ 1271 using the con- 
structive random choice method. This algorithm is very close to the Go 
method. (See Section 5 for these methods.) The random choice method in itself has 
had a strong influence on the development of computational methods. 

The nonlinear mathematical evolution of the unstable vortex sheet has been 
sought for a long time. In 1931 Rosenhead [72] approximated the continuous dis- 
tribution of vorticity in the sheet by a succession of 12 line vortices, and his 
numerical solution in fact showed the smooth roll-up of the sheet around periodic 
concentrations of vorticity. But Birkhoff [73] challenged this result as being incon- 
clusive because his own calculations with 20 line vortices produced an irregular 
sheet that became tangled and did not roll up smoothly. The difficulty has been 
found to lie in the singular nature of the equations being integrated. &ater 
investigators have modified the point-vortex approximation in various ways to 
alleviate the singularity [ 181. After some finite time thle sheet develops a cusp and 
ceases to be analytic, and numerical evidence indicates that beyond this time the 
point-vortex approximation does not converge as the number N of line vortices 
increases. A very recent analysis by Krasny [66] significantly advances t 
understanding of this problem. He introduces a smoothing parameter 6 that a 
like an artificial viscosity and effectively de-singularizes the equations of motion. 
carefully reducing the value of 6 and increasing N in a series of numerical 
calculations, he has produced results indicating that the sheet rolls up into a well- 
defined double-branched spiral (Fig. 8b). Outside of the core, the specific value of 
the smoothing parameter 6 has little effect. As 6 decreases, more turns of the spiral 
appear within the core, but the size of the core itself does not change. 

Striving to obtain a highly accurate solution to this singular problem may seem 
academic, but there is belief now that such fundamental unstabie phenomena may 
play a role in the coherent large-scale vertical structures that arise out of the chaos 
of turbulent flow [65,68]. Representing turbulence as a superposition of interacting 
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vortices is not a new idea. Townsend [67] treated homogeneous turbulence as a 
collection of vortex sheets and tubes. A thorough understanding of the basic 
mechanisms then may help to sort out the more complicated situations. Krasny’s 
work strengthens the argument that the vortex-sheet model of inviscid flow is a 
worthy one for studying the problem of the turbulent mixing layer. 

Before the time of computer simulations, the well-posedness of physical boundary 
conditions was established for many of the equations of fluid dynamics. A bounded 
domain is needed for the calculations and, if the domain is not bounded by physical 
boundaries, computational boundaries have to be introduced. New conditions are 
needed at these boundaries. Exterior flow in aerodynamics and limited-area weather 
forecasting are a couple of examples. These types of problems inspired a new theory 
of well-posedness of initial boundary value problems-the normal mode analysis 
[128]. The analytical problem of well-posedness is transformed into an algebraic 
problem. The theory only applies to linear problems but gives practical guidelines 
also for nonlinear equations [ 1811. 

Consider the following example. A hyperbolic system of linear equations 

a9 a4 89 89 t+Az+B-+Cz=O 
ay 

4(x, Y, -7,O) =40(x, y, z); o<x<co, 
(3.8) 

where a boundary at x = 0 requires boundary conditions of the form 

q(l) = sqC2) + q( y, z, t). (3.9) 

The number of boundary conditions should equal the number of positive eigen- 
values of A. The vector q(l) contains the characteristic quantities corresponding to 
these positive eigenvalues. If 

TAT-’ = diag(&), 
l,bO, i= 1, . ..) r 
Iv, < 0, i= r + 1, . . . . d 

then Tq = ($I), with q(l) and q (2) having the dimensions of Y and d- Y, respectively. 
A necessary normal-mode condition for well-posedness is that there is no 

solution 

q = exp(st + io,y + io,z) 4(x) 

o2 and wj real, real part of s > 0 

to (3.8) and (3.9) such that the &-norm of 4 is bounded. This gives algebraic 
conditions on S. The necessary and sufficient conditions are somewhat more 
complicated. 
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It is not enough to have well-posed boundary conditions at the computational 
boundaries. The new boundary conditions should imitate the free-flow solution as 
much as possible. Several techniques with this aim have been proposed [62, 1291. 
The simplest type of free-flow boundary condition for the problem (3.8) (3.9) is to 
choose S = 0 [62]. 

The theory for the numerical approximation of a partial differential equation has 
been developed in parallel with the progress of CFD. The stability theory is a good 
example, starting with the von Neumann stability condition. As a necessary con- 
dition, a scheme must have bounded solutions when applied to the initial values 
qy = exp(2zia-xJ) for any real o, (dx > 0). Different sufficient conditions for the 
stability of the initial value problems for constant coefficient systems were derived 
by Lax, Kreiss, and others (see Ref. [38]). Later Kreiss introduced numerical dis- 
sipation in order to generalize the stability theory- to variable coefficients [l21]. 
This device is also very useful in practice. The modern theory of pseudo-differc~~ial 
operators which apply to variable coefficient partial differential equations has also 
had an impact on the numerical stability theory. Lax and Nirenberg [122] give 
sufficient conditions for variable coefficient Cauchy problems based on a sharp form 
of the G&ding inequality. In the last few years the convergence theory has been 
extended to nonlinear problems with L,-stability for monotone schemes and for 
schemes that control the total variation norm (see Section 5). 

Using the analytical theory as a guide for scheme design is at least as important 
for the initial boundary value problem as it is for the pure Cauchy problem, 
Stability theory that includes the boundary conditions has been developed based on 
a discrete version of the normal mode analysis [61]. Recently, the sufficient con- 
ditions for stability have been simplified, thus improving the applicability of the 
theory [ 1231. 

When a differential equation describes solutions having widely different time 
scales, it is said to be stiff. In a stiff problem the scales corresponding to phenomena 
that may change rapidly cause difficulties in the numerical solution Stability 
requirements for explicit methods force the time steps to be impractically short. 
Convergence of iterative methods for implicit schemes is in jeopardy. There are two 
different types of stiff problems in CFD. In one, the fast scales are important and 
affect the overall flow as in turbulence. The rapidly changing phenomena cannot 
simply be eliminated. Their influence on the slow scales has to be modeled (see, e.g., 
Refs. [75, 78]). In the other type of problems, the fast scale does not in a substan- 
tial way interfere with the slower scales. These fast waves can then be removed by 
preparing the initial values, by filtering during the time evolution, or by modifying 
the differential equations (see Ref. [ 1241). A good example of this type of problem 
is in numerical weather forecasting. The waves of interest carry the weather patterns 
and they travel much slower than the gravity waves. Another example is the Euler 
equations in the limit of a vanishing Mach number. Acoustic waves then travel 
much faster than velocity waves and make the computational problem badly pose 
Removing the fast waves that have little meaning to the problem restores its con- 
dition for computing the solution. In the case of the Euler equations one deletes tke 
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density and replaces its time derivative with that of the pressure. This is the 
artificial compressibility approach of Chorin [ I201 for steady incompressible flow 
that gives the new hyperbolic system 

&l at+ 
that now has the pseudo-acoustic wave speeds u ? dm. Choosing the free con- 
stant c to be the order of u produces a system with less variation in wave speeds 
than the original physical system. (See also Ref. [ 1111.) 

4. DISCRETIZATION OF THE FLOW DOMAIN 

The overall goal of CFD is: Given a flow problem specified by particular boun- 
dary conditions and sometimes also initial conditions, describe the solution as a 
finite set of numbers distributed throughout the domain of the flow and obeying 
some functional relationship among them based on some approximation derived 
from the continuum equations chosen to govern the problem at hand. It is arrived 
at by first projecting the continuum problem of the differential equations to some 
finite-dimensional space for the dependent and independent variables and then by 
solving the resulting discrete equations for the final set of numbers. When solving 
the partial differential equations cast in the Eulerian formulation with reference to 
some coordinate system, the first step in the projection process is to discretize the 
domain of the flow by laying out a network of points situated at a finite number of 
different locations of the independent variables, i.e., to create a grid. The simplest 
one is the regular Cartesian grid. The grid points (x1 ,yk, z,) are given by x,=x0 + 
jdx, y = y, + kdy, z = z0 + IAz, and the approximation to the dependent variables q 
at these grid points are here denoted by q,k,. Let q& denote the time-dependent 
approximation (qykl z q(xj, y,, zI, t,), t, = t, + ndt). The extension to variable step 
size is simply (x, =x0 + &4x,, etc.). Other extensions are discussed below based on 
transformation of the independent variables. The location of the spatial grid points 
may be time dependent as, e.g., in adaptive grid methods and Lagrangian grids. The 
grid is called unstructured when it does not have the Cartesian form. These grids 
are best used with finite element methods. 

The computational algorithms are either explicit, 

4 n+ 1 = G(q”); (4.la) 

or implicit, 
G(q” + ‘, q”) = 0 (4.lb) 

The vector q” consists here of all unknowns (qJkl) at the time level n. (The index n 
may also be the iteration number in a steady state computation). The accuracy 
depends on the smoothness of the functions being represented and the density of 
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grid points. It is usually analyzed on the basis of a Taylor series expansion from one 
grid point to another. Thus it becomes a question of the resolution of scales in the 
fluid phenomena in relation to the distance between grid points, i.e., the mesh 
length. The scales of the physical features in the problem may only be very broad, 
on the order of the overall size of the domain, if the flow is laminar; but they also 
may range from these broad ones down to the dissipation length scales if there are 
boundary layers or instabilities in the flow and turbulence occurs. 

Resolution of Scales 

One way to increase the resolution of these scales, i.e., resolve more of the finer 
scales, is to raise the complexity of the functional relationship between the depen- 
dent variables evaluated at the grid points and thus improve the information con- 
tent being passed from one point to another, that is to use a higher order numerical 
method. Provided that the function over the grid points is smooth, this approach 
does offer better resolution for a given number of grid points. But it also means a 
more complicated algorithm that may demand more arithmetic operations per step 
and more effort to implement on advanced computer architectures, and it therefore 
may be less universal in its applications. 

The other way to improve the resolution of line scales with a given algorithm is 
to increase the number or optimize the location of grid points in the independent 
variables over which the dependent variables are evaluated. The length scale of the 
phenomena resolved is thereby reduced in proportion locally to the mesh-length 
raised to the order of the approximating scheme for the differential equations. This 
approach is particularly appropriate if the function being approximated is not 
smooth. It involves no changes in the algorithm itselk instead, its drawback lies on 
the hardware side because the computational problem grows in size, it demands, 
more memory, and the execution time increases. As partial relief to this, one tries to 
optimize the distribution of grid points locally in order to maximize the resolution 
in special regions of the flow. A long-standing example is the mesh aligned with, or 
lit, to a solid-wall boundary. Here rapid gradients in boundary layers are known to 
occur, and the region can be identified in advance. With a boundary-fitted mesh the 
distribution of points is regular and it can be graded from a small size going out- 
ward from the wall to match smoothly with a larger mesh size in a region away 
from the wall. It requires no extra interpolation to set the boundary conditions and 
thus enhances the efficiency of the computation. A further enhancement comes by 
setting additional grid points into the mesh in a preselected local region. This local 
refinement establishes a second grid distribution identified by interior boundaries 
with its parent distribution across which the pattern of points may be smooth and 
regular or irregular. Different interior boundary conditions may be needed in each 
case. 

When the region for grading or refinement cannot be identified in advance, some 
form of intelligent decision-making has to be built into the algorithm in order to 
sense the appropriate regions and then automatically to grade or refine the mesh. 
Adding complexity to the algorithm, this adaptive strategy affords better efficiency, 
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in general, for the resolution of tine scales. It comes closest in character to the 
traditional concept of tracking or fitting a front or discontinuity and is more easily 
implemented in an unstructured grid than in a structured one. Thompson [Sl] and 
Eiseman [83] have recently reviewed the current status of this technique. 

However successful all of the above procedures are, they still cannot hope to 
resolve the very wide spectrum of scales that problems in fluid mechanics present. 
In turbulent flow an estimate based on the Kolmogorov scales says that the number 
of grid points needed to resolve them is proportional to Re914, and the time step d t 
to follow the smallest eddies is on the order Ree1j2. Rogallo and Moin [79] have 
estimated that for a turbulent channel flow at the moderate Reynolds number 
Re = lo4 roughly 50 billion grid points and 2 x lo3 time steps are necessary for the 
flow to reach a statistically steady state. Hence for high-Reynolds-number problems 
the hardware limitations of present and foreseeable future computers set a limit on 
the scales that we can resolve, quite independently of the software. For problems 
with such a wide spectrum of scales, the best we can do now is to try to take the 
effect of the small scales into account by some form of analytical modelling built 
into the algorithm representing, to some approximation, those scales smaller than 
the smallest resolved on the mesh, i.e., so-called sub-grid scale modelling. It is the 
essence of turbulence modelling [75, 78, 791. Its success presumably depends very 
strongly on how much energy those sub-grid scales actually carry and how much 
they affect the resolved larger scales. 

Topology of Grid-point Patterns 

In addition to the accuracy of the results, the overall efficiency of the com- 
putational procedure also depends on the connectivity of the set of grid points. If 
the size of a given mesh cell varies substantially in comparison with its immediate 
neighbor, then a standard finite difference approximation to a first derivative, for- 
mally accurate to second order O(dx*) on a uniform grid with spacing dx, falls to 
first-order accuracy. A finite-element approximation, however, can maintain its 
accuracy under these circumstances but may lose its superconvergence properties. 
Second-order accuracy is maintained for the standard finite difference 
approximation provided the variation in size, i.e., the smoothness of the cell 
dialation, is Ax, = Ax,[ 1 + O(Ax,)]. Apart from formal accuracy is the matter of 
the diffraction of waves as they pass from a region of small mesh spacing to one of 
larger spacing. The analysis of Browning et al. [SO] indicates that if their 
wavelength cannot be resolved on the coarse grid then distortion takes place. 
Recent results obtained with locally refined grids suggest that the question of 
diffraction caused by grid-size variation does not seem to be critical. 

A pattern of grid points ordered regularly, including those on the boundaries, 
simplifies the treatment of boundary conditions and reduces the overall com- 
putational work because it lays the groundwork for efficient communication 
between a cell and all its neighbors in the mesh. As we discuss later, this has impor- 
tant consequences for actual computations using computers having vector or 
parallel architectures. The smoothest and most regular patterns of grid points are 
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those, according to Eiseman [83], that result from smooth coordinate mappings. 
The simplest and most regular patterns in this class arise when the points are con- 
nected only along coordinate directions, e.g., Cartesian grids. They minimize difrac- 
tions because of their smoothness and provide a consistent structured pattern that 
allows the neighbors of a given point to be identified in relation to each other. And 
this information leads to more efficient computations because knowing it eliminates 
having to compute the identity of the neighbors (indirect addressing). For vector 
computing it means reduced movement of the data in order to achieve proper 
alignment of the elements (gather/scatter commands). 

Opposite to all of this are the so-called nonstructured grids that are commonly 
used with finite-element methods. A nonstructured grid can be simply a collection 
of points with no special order to them. The computational cell need not be a 
hexahedron and the variation in size from one to another need not be smooth. 
because of the lack of inherent regularity, its neighbors must be identified through 
the additional computational work of indirect addressing. In its favor, nonstruc- 
tured grids are easier to construct, and local regions of refinement can be inserted 
more naturally. 

Consider the example of a simple wing-fuselage combination in Fig. 9. Single 
mappings exist that relate a point P in the physical domain, specified by its rec- 
tilinear coordinates x, y, c, to its image in the space of the computational data, 
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FIG. 9. Single global mapping of the physical space to a body-aligned computational coordinate 
space 
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identified there by the coordinates 5, q, i of its Cartesian grid. Through such map- 
pings or coordinate transformations, one can produce regularly ordered and 
smoothly varying grids most simply and naturally by selecting a uniform spacing of 
points along each of the three Cartesian coordinates of the computational data. The 
connectivity in the resulting pattern of points then is preserved under the transfor- 
mation to its image in the physical space and thus yields the grid of points forming 
a tessellation of hexahedral cells. 

The differing types of grid patterns may be categorized according to characteristic 
local irregularities in their structure, where a coordinate direction joins or departs 
from a boundary or where two coordinate lines of the same family run together, i.e., 
a coordinate singularity. Figure 10 displays the tessellations most often used for the 
profile of an airplane wing. They can be seen as generalizations of the classical cur- 
vilinear or conformal coordinates. Providing the best resolution on thick rounded 
edges because they wrap around such features, the C and 0 types represent the 
entire profile by all or part of one computational coordinate line which may contain 
one or more singular points at sharp edges. The folding or wrapping of the transfor- 
mation creates branch cuts which makes the mapped computational domain simply 
connected. The H type treats the image of the airfoil as a slit in a section of one 
computational coordinate. It yields a simply-connected grid but one with the 
poorest resolution for rounded leading or trailing edges. Related to it but with 

PHYSICAL SPACE COMPUTATIONAL SPACE 

FIG. 10. Some of the commcm coordinate mapping types for grids around an airfoil. 
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somewhat better resolution for blunt edges, the L type represents the airfoil as a 
combination of sections of computational surfaces belonging to different families. In 
so doing it forms a cavity in the grid, and the computational domain is multiply 
connected. Whereas the C and 0 tessellations are folded and contain singular 
points (lines in three dimensions), the H and L types create corners in the com- 
putational domain where none exist in its corresponding image in the physical 
space. These so-called fictitious corners may be seen as a form of coordinate 
singularity. Singularities, however, can be avoided entirely, but only by replacing 
the singular quadrilateral cells with some other type off polygon and thereby break- 
ing the consistency of the pattern. In CFD the common preference is to retain 
consistency and accept the singularities. 

In three dimensions Eriksson [S6] describes the types of mappings suitable for 
fitting meshes to closed surfaces. If a consistent pattern of quadrilaterals is main- 
tained for the surface mesh, one or more singularities in the mapping appear on the 
surface and persist out to the field mesh. Common types are polar and parabolic 
singular points. Eriksson [8X] has analyzed the effect that these singular lines have 
in a numerical solution. He finds that a finite-difference scheme may lose stability at 
such a singularity, but the finite-volume scheme remains stable although it suffers a 
drop of about one-half order of accuracy. 

The degree of geometrical complexity and detail that can be carried by the single 
global transformation in Fig. 9 is of course limited. To go beyond its iimitations 
requires the flow domain be segmented into component sectors that together con- 
stitute the whole. The sectoring is usually done to produce a subdomain of the flow 
that a single coordinate transformation can represent adequately, thus achieving 
regularity and connectivity within the constituent or component grid for that sub- 
domain. Each component grid shares all or part of a sector boundary with another 
component grid. The connectivity and smoothness in the pattern of points across 
the boundary depends on how the component grids are joined together. Two alter- 
natives are the simple butt joint or the overlap joint (Fig. 11) the latter derna~~i~g 
more complicated interpolation [92]. In either case the computational coor 
are discontinuous, but the physical coordinates may be smooth, may suffer metric 
discontinuities, or may be discontinuous themselves (Fig. lib). Each type of inter- 
face and its associated boundary conditions has to be judged in terms of its effect 
not only on the accuracy and stability of the numerical solution but also on the 
preservation of its conservation principle 1911. Viewed as a whole, the flow domain 
then is discretized by an irregularly connected assembly of constituent grids or 
supercells, each of which is a regularly connected pattern of individual com- 
putational cells (Fig. 12). 

Comtrzrcting the Supercell Grid 

The discretization procedure we have described so far is a hybrid, because it com- 
bines an unstructured arrangement of supercells, common in finite-element meshes 
[SS], with highly structured component grids within the supercells, usual for tinite- 
difference meshes (Fig. 12). Eiseman [S3] and Thompson [84] describe two dif- 
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FIG. 11. Two types of supercell Junctions: (a) overlapping joint, and (b) butt or patched joint. 
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ferent methods based on coordinate transformations to construct the structured 
grid within the supercell. The solution of a system of elliptic equations provides a 
formal theory for the general approach to grid generation pioneered by Thompson 
[SZ]. On the other hand more specific algebraic methods when suitably implemen- 
ted offer a means to construct very large meshes efficiently because their execution 
time, usually, is almost independent of the mesh size. Either method requires the 
tessellation of each of the six faces of the supercell. Some of these may be interior 
surfaces or outer boundaries in the physical domain that do not require great 
precision. They can be chosen as simple geometrical shapes upon which a surface 
grid is laid out easily. Other faces that are physical boundaries can be very intricate 
and require high precision. Constructing the surface grid then is not easy. First, the 
surface itself must be defined in the physical space usually by a two-family tensor- 
product parametrization into quadrilateral patches using either Bezier cubits or 
splines, or some Coons-patch technique of spline-blended surfaces, e.g., transfinite 
interpolation (Fig. 13). The data given to define the surface lies along the two- 
parameter curves. It is most natural to use these curves as the computational 
coordinates of the surface grid and then take some uniform or simple graded dis- 
cretization of them. In some cases, however, this is inappropriate and an additional 
transformation to a second set of two-parameter curves in the surface is needed in 
order to define a suitable surface grid. The specific tessellation of the six faces of the 
supercell determines the topology of its grid. The more complicated that topology 
is, the more difficult it is to generate the required surface grids, particularly if the 
surface has a general shape. 

Once the grid is set on the six faces of the supercell, either an algebraic method 
or a differential-equation solver can construct the grid in the interior. Both of these 
have been reviewed extensively already [82, 841. The algebraic technique we use is 
transfinite interpolation, the theory of which is described by Gordon and Hall, 
generalized by Gordon to match out-of-surface first-order derivatives which 
Eriksson [86, 871 further developed up to third-order derivatives in order to 
achieve greater control over the shape of the mesh lines. Let r(u, v, ~7) = 
[x(u, 11, MI), y(u, v, w), z(u, v, w)] denote a vector-valued function of t 
parameters U, V, w defined on the six faces of the supercell in U. o, w space, 

FIG. 13. Two-family parametrization of a 3D surface. 
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zl1<U<U~, v,<vdv,, w,<w<w,. This function is not known in the interior of 
the supercell. Its values and certain of the out-of-surface derivatives of r, 

$ r(uk, v, w) = ap)(v, w); k=l,2;O<n<3 

-& r(U, vk, W) = bf)(u, W); k= 1,2;06n<3 (4.2) 

-& r(u, zi, wk) = ‘$‘(u, v); k= 1, 2;O<n<3, 

are specified on the outer surfaces of the supercell ui < u < u2, vi < v < v2, 
w1 < w 6 w2 in U, v, w-space. To interpolate this data into the interior of the super- 
cell requires a set of univariate blending functions, 

c(p)(u). 7 k=l,2; Odn<3 

Ptw 9 k= 1,2; O<n63 

ypq w); k= 1, 2; Odnd3, 

which can be chosen to grade the mesh spacing, but they must satisfy the 
conditions 

g Y,t’(wl) = 6k, .&z,n. 

The generalized tranlinite interpolation algorithm as formulated by Eriksson 
W, 871, 

rl(u, 4 w)= t i c@)(u) ap)(v 2 w) 
k=l n=O 

rz(4 4 w) = rl(u, v, w) + i: ii: pp(v, bj$(u, w) -& fl(u, vk, W)] (4.3) 
k=l n=O 

r(u, v, w) = rz(u, v, w) + f 
k=l n=O 

cp)(u, v) -Al rz(u, v wk) 
I awn ’ ’ 

then prescribes the function r throughout the supercell and defines a transformation 
from the rectangular region ui < ZJ < u2, vi d v < v2, w1 d w d w2 in u, v, w-space to 
some arbitrarily shaped region in x, y, z-space with geometric data specified only on 
the outer boundary of the parametric domain. After discretizing with a uniform 
interval along each of the three directions of the parameter space U, v, w, algorithm 
(4.3) then provides the image points in x, y, z space, i.e., the grid then has been 
constructed. 
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FIG. 14. Mono-cube O-H mesh for the passage through a row of turbine blades [ 1781 (reprin 
with permission). 

ted 

FIG. 15. Three-supercell O-O mesh with $-type singular lines for an automobile [90] (reprinted M 
permission). 

Grh 
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Example Grids 

Krouthen [178] has recently used the Eriksson transfinite interpolation techni- 
que to construct a grid for the three-dimensional flow through a turbine-blade 
passage. Figure 14 presents a view of this mono-cube O-H grid around such a 
blade. In this application some of the outer faces of the cube have been sculptured 
to meet the condition of periodic flow that is common for internal flows. Berglind 
[90] has also adapted the technique to generate a mesh around an automobile 
situated above the ground. His mesh is a three-supercube O-O grid with four 
points having a &type singularity (Fig. 15). Here he uses the surface normal vector 
as the out-of-surface derivatives in the transfinite interpolation and calculates them 
from the coefficients of the bi-cubic spline representation of the surface. 

5. METHODS FOR HYPERBOLIC CONSERVATION LAWS 

There are many ways to discretize the differential or the integral forms of the 
hyperbolic conservation laws (3.2): finite difference methods, finite element 
methods, spectral decompositions, and others. Each has its own particular set of 
properties, but in most of them a solution of the continuous system is approximated 
via some projection into a finite dimensional space determined by &he grid that 
spans the domain. We are concerned here with the problem of approximating a 
nonsmooth solution to a nonlinear conservation law. 

Most computational methods for partial differential equations are designed for 
smooth solutions. In finite difference approximations, for example, divided differen- 
ces replace derivatives. This approximation naturally gives large errors locally if 
there is a discontinuity in the solution of the differential equation. The standard 
convergence theory for finite difference and finite element approximations breaks 
down if the analytic solution contains discontinuities. In fact, only certain types of 
discrete approximations do converge to the correct solution as the step or element 
size decreases. 

Treatment of Shocks 

Let us use a simple one-dimensional model equation in order to demonstrate the 
options that are available in shock computations. Consider the inviscid Burgers 
equation 

~+Y&f(4)=~+-&42,2)=o; 4(X> 0) =40(x) 

with a step function as initial data 

(5.1) 

x-co 
x30 ; QL>QR. 



COMPUTATIONAL FLUID DYNAMICS 31 

This problem has a unique entropy-correct solution q(x, t) with shock spee 
s = (QL + QdP> 

4(x, t) = 
i 

QL x < St 

QR x > SC. 

Assume that we want to represent the solution on a grid by an approximating 
grid function qJ’ - u(x,, t,), x, = jdx, t, = ndt. We are now faced with the following 
dilemma. If we want the numerical solution to be rather accurate around the shock, 
the values of q,” must jump suddenly when the shock passes a grid point (see 
Fig. 16). For those time-steps when the shock location only moves between two 
grid points the numerical solution q; should be essentially unchanged. 

This cannot be achieved by a standard deterministic difference method. 
no way for the method to know when to change the value at a grid point fr 
a different q,” + I, when the shock passes x], or when to leave the approximating grid 
function unchanged for a time step. There are essentially three ways out. of this 
dilemma. A pointer can be introduced to record the shock location, the location is 
updated in every time step, and it triggers a change in the grid function wbenever 
appropriate. This is the so-called shock tracking or shock fitting method and it has 
been used for a long time (see Section 2). 

Another possibility is to make the change in the grid function averaged for the 
correct number of times. If Ax = 3sAt the shock passes a grid point in every third 
time step. The change in the approximate grid function can be done on average 
every third time when the algorithm is based on a random number. This is a 
simplified version of the random choice method which first was introduced for 
theoretical purposes by Glimm [ 1271. It still is the method with the best theoretical 
foundation. 

Finally, we can give up on the sharp resolution OE the shock and allow for a 
O( l)-error at a few grid points close to the discontinuity. This shock-ca~t~ri~~ 
technique was started by von Neumann and Richtmyer (see Section 2) and is now 
the most common in engineering practice. 

There are some other options, e.g., grid-free particle methods and metho 
Bolzmann type [95], but they have not so far had any greater practical importance. 

9 

QL 
l--+--T 

FIG. 16. One-dimensional example of shock capturing. 

5?,1/72/1-3 
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(i) Shock tracking. In this classical procedure the shock surface is treated as 
an interior boundary of discontinuity. The evolution of the surface is governed by 
the Rankine-Hugoniot conditions. We discussed the method in connection with the 
blunt-body problem in Section 2 and we shall here only note some advantages and 
disadvantages as compared to shock capturing. 

The difficulty with shock tracking is that the structure of the discontinuities and 
their interaction must be known or anticipated. Special sets of pointers must track 
each discontinuity and the programming becomes complicated. For new 
phenomena, new mathematics is needed. The latter may be desirable, however, even 
if a lot of work is needed since it may give new insight into the problem. 

These difficulties are behind the fact that tracking is not so common in engineer- 
ing practice today. There are, however, also advantages with tracking. One is that 
new averaged physical states do not need to be introduced. These are the 0( 1) 
errors in the capturing method discussed above. The averaged states may 
drastically change the solution, e.g., in some combustion calculations. Another 
positive factor is that the difficulty capturing methods have in keeping contact dis- 
continuities sharp is avoided. 

During the last few years hybrid methods have attracted some interest. Overall 
the schemes are capturing methods in conservation form but certain critical 
phenomena are tracked [ 1341. For recent development of tracking we also refer to 
the work of Glimm et al. [ 1311. 

(ii) The random choice method. As mentioned in Section 3 this method was 
originally designed for theoretical purposes in the existence proof of Glimm [127]. 
The method has been applied successfully to some one dimensional calculations, 
in particular for combustion problems [ 1321. The advantage over capturing is 
similar to that of tracking, i.e., that new artificially averaged physical states do 
not need to be introduced. However, the method never worked well for multi- 
dimensional systems. The scheme creates errors in the location of the discontinuity, 
and in more than one space dimension this results in nonsmooth shock fronts and 
new artificial waves appear. This is studied by Colella in [ 1321. 

We shall give a few more comments on the random choice method in connection 
with the discussion of the Godunov method below. 

(iii) Shock capturing. This is by far the most commonly applied technique 
today. The method is simple to program since a formula with the same structure is 
used all over the computational domain. No knowledge of the type and location of 
the discontinuities is, in principal, needed. 

One important effort in the design of good capturing schemes goes into control- 
ling the O(1) errors that occur around the discontinuities. If Eq. (3.5) is discretized 
by centered differences both in time and space, i.e., by the leap-frog method, 

q,,+1 -q;-1 +W(4,“+1)-f-(4,“- 1))=0: 2 = At/Ax, (5.1) 

the errors that are produced at a discontinuity will spread all over the com- 
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Discrete entropy conditions are needed in order to rule out unphysical solutions. 
One possibility is to impose a discrete analog of the continuous entropy inequality 
[94]. Another is to let the artificial viscosity in the numerical scheme eliminate the 
possibilities of unphysical shocks. 

The three global criteria discussed above, dissipation, conservation form, and 
entropy conditions force the large errors in a capturing method to be localized 
around a physically correct discontinuity at essentially the right location. The 
behavior close to the discontinuity is different for different methods. Some of the 
more successful techniques are discussed below. 

In the artificial viscosity method the capturing of shocks follows from a scheme 
that has a higher order even derivative of a certain form as the leading term in its 
truncation error. This term then acts to damp the effect of the 0( 1) error at the 
shock as they spread into the smooth parts of the solution. As it was originally con- 
structed [47] the Lax-Wendroff scheme when applied to the linear scalar Eq. (3.5) 
was formulated to get second-order accuracy in both the t and x derivatives by 
truncating the third term of the Taylor series expansion in time and replacing the x 
derivative with central differences 

q;+‘, 9+l;+1 -Y;‘,)+;(Y:lt, - 29:’ + q:‘- 1). (5.4) 

It has a fourth-order x derivative in its truncation error (Ref. [38, p. 3221). Notice, 
however, that if the Courant number 1 is set to one, all the coefficients of the error 
terms vanish [63], and the scheme recovers the exact method of characteristics 

9, n+l = q,“- i. For the general nonlinear problem (3.5) then, it led to a class of 
methods in the form of predictor-corrector schemes that alternated their directional 
bias on each step. Examples are the two-step Lax-Wendroff scheme 

-n + l/2 _ 1 4 I + 112 -2(q:+l+q:)--t(f:+l--f:) 

q,“+ I = q;” - n(y;;;/; -jr;f;/;) 

and the MacCormack scheme 

which first predicts a value by a backward difference and then uses it in a forward 
difference centered about the middle of the time step to calculate the final corrected 
value. 

In practice this scheme takes the minimum storage, requires the least arithmetic 
operations, and allows the simplest programming logic. Considering a general class 
of two-level explicit difference schemes with nine-point support in two dimensions, 
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Lerat and Sides [99] have shown that spurious errors and oscillations can be 
reduced by controlling the higher order terms in the discretization error. 

Other schemes are completely centered and do not explicitly use information 
about the direction of propagating signals. Gary [loo] originally proposed a class 
of centered multi-stage schemes 

and more recently Jameson et al. [ 101, 521 have developed them into a broad class 
of centered multi-stage Runge-Kutta procedures suitable for problems in several 
space dimensions which, among others, Rizzi and Eriksson [ 1161 applied to the 3 
problem of transonic flow around a wing-body combination. These schemes make 
no attempt to match the characteristic directions, but they benefit from t 
refinement of a new estimate of the nonlinear function fat each stage, which at the 
same time increases the stability bound on the time step, if the optimum shoice of 
weighting coefficients is used. Unlike the Lax-Wendroff schemes, the centered 
Runge-Kutta methods effectively uncouple the time integration from the space dif- 
ferencing, sometimes called the method of lines or the time-continuous approach It 
has the desirable property that when a steady solution is reached, i.e., q,” + l= q,“, it 
is independent of the time step, and one can show that the original steady difference 
operator is satisfied [ 1021. But the scheme is nondissipative, so numerical viscosity 
must be artificially added in order to capture the shock waves. 

The success of this approach depends on the detailed construction of the model 
for the artificial viscosity. One desirable property is that the shock transition layer 
does not extend over more than 3 to 4 mesh intervals and is independent of the 
shock strength. Another is that the transition layer should travel at very nearly the 
correct speed through the fluid and that the flow quantities should have very nearly 
the correct jump across it. Early work [36,47] began by adding linear and 
quadratic terms of gradients of the solution q” directly to the scheme. Lapidus 
[ 103 ] also added similar quadratic terms but as a post-stage correction, not as an 
integral part of the scheme. Meanwhile, in meteorology practical experience was 
suggesting a need for filtering because of aliasing of the short-wavelength com- 
ponents of smooth flow [ 104, 1051. Vliegenthart then proposed the Shuman filter, a 
centered second-difference formula, as a post-stage artificial viscosity. This was 
effective in controlling nonlinear instabilities, but second-order accuracy was lost 
even in smooth regions of the flow. Harten and Zwas Cl071 corrected this 
shortcoming by adding a switch in the form of a density gradient to sense for 
shocks and automatically turn off the filtering where no shocks are found. The 
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switch makes it a nonlinear filter. Adding a similar filter directly as an integral part 
of their scheme, MacCormack and Baldwin [106] devised the sensor 

IP,+1 -2p,+p,-II 

?= IP,+1+2PJ+P,-lI 

as a normalized second-difference of pressure. Jameson experimented with this 
model in combination with his centered Runge-Kutta scheme but found that small- 
amplitude short-wave components in the far field aliased and persisted as distorted 
long-wave transients [lOS]. By blending a fourth-difference term into the switched 
filter, his model then removed this phenomena. Little work was done on 
appropriate boundary conditions for this relatively well-developed model until 
Eriksson [ 1141 and Pulliam [ 1 lo] proposed criteria for the boundary conditions 
in order to maintain the damping property even near the boundaries. In its present 
form the model is sophisticated, but straightforward to implement on vector super- 
computers. The work to compute it can be as great or even greater than the com- 
putation of the advective flux differences. The total work, however, is still a factor 
of three or more less than the upwind schemes, and this together with its simplicity 
in implementation and broad empirical adaptability to very local nonlinear 
phenomena make it one of the more popular methods in engineering applications. 

The schemes discussed so far have all been of centered type. The derivatives 
i3f/ax, etc., have been replaced by a centered divided difference. The domain of 
dependence for the difference schemes spreads out in all directions. The other 
possibility is to use one-sided or upwind difference approximations of the fluxes. 
The domain of dependence for the difference approximation then more closely 
resembles that of the original differential equation. In practical computations these 
methods often have very sharp shock profiles (see, e.g., Refs. [95, 1341). This can 
also be proved in some cases [94]. In Fig. 17 it is clear that computation in the 
direction away from the discontinuity is not affected by errors close to the discon- 
tinuity due to the form of the difference stencils on the different sides of the shock. 
Although there are problems for which the shock can be resolved over one mesh 
point, in general, this is not the case and there are some disadvantages with 
upwind methods. They are often less accurate in smooth parts of the flow than the 

FIG. 17. Shock capturing in two dimensions. 
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corresponding centered approximations and they carry a higher corn~~ta~io~a~ 
cost. 

The first thorough study of upwind difference schemes was done by Courant er’ 
al. j164]. They considered linear problems. 

For a scalar constant-coefficient problem 

a4 a4 ;i;+a&=O: 

the first-order upwind method has the following form: 

q:+l-q,“+a/2(qr-q:_,)=O; a30 

q;+l -ql”+a;l(q,“+,-q,“)=O; a < 0. 
15.5) 

This approximation can also be written 

q;+l -Yi”+~(~+(q,“-qq,“~,)+u-(q~_I-q4,”)!=0 

a + = max(a, 0); a- = min(a, 0). 

The one-sided differences must stretch out in the right direction for the scheme to 
be linearly stable. The approximation of systems is therefore a little more com- 
plicated since such a characteristic quantity has to be approximated ind~vid~a~~y~ 
The system 

is approximated by 

where 

q;+’ -q~+~(A,(q,“-q,“~,)+A~(q~+,-q,“))=O 
A+=T-‘A+T; A- = T-‘L T, 

A= T-‘/IT: A = diag(;l,) 

A + = diag(max(l,, 0); A ~ = diag(min(A,, 0)). 

(5.6) 

The matrix A + contains the positive eigenvalues of A and A ~, the negative ones. 
The approximation (5.6) can be reformulated as 
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This form shows the connection between centered and upwind schemes. A centered 
approximation with a very special choice of artificial viscosity gives the upwind 
scheme. 

The schemes (5.5) and (5.6) are first-order approximations. They can be 
generalized to second order by including qJn+2 and q;I”- 2 in the formulas. Order 
higher than two is, however, not possible (see, e.g., Ref. [94]). There are so-called 
upwind biased schemes which are somewhere in between strictly upwind and 
centered schemes and which can have higher order accuracy. 

The extension to more than one space dimension is easy and is done dimension- 
by-dimension. The extension to nonlinear conservation laws requires a bit more 
effort. It would be immediate if we could use the quasi-linear equations directly 

$+A(q)~=O: A(q) = the Jacobian: af 
a4 ’ 

but then we would lose the conservation form. 
In the survey of upwind schemes [95] Harten et al. deline a nonlinear scheme to 

be upwind if it is of the form (5.6) when linearized and strictly upwind when all 
signal speeds are in one direction, that is, if aflax is approximated as 

af if the eigenvalues of - > 0 
aq 

af if the eigenvalues of - < 0. 
a4 

The first algorithm for the conservation laws with these properties was the 
Godunov method [93]. This method has been very successful and has also been 
generalized in many ways. The Godunov method is based on the integrated form of 
the differential equation 

s ‘+v (q(x, t,, 1) - dx, tn)) dx + j”” U”W,+ l/z, t)) --fMx,- l/z, t))) dt = 0. x, - l/2 fn 
(5.7) 

In three space dimensions the first integral is over a computational cell 
(x,- 1j2<x<x,+1,2, Y~~~~~<.Y<~~+~,~, z,~,,,<z<z,+,,,) and the second over the 
cell boundary. This formulation is the basis for all finite-volume methods and the 
so-called MUSCL schemes. The first integral expression is replaced by the average 
values in each cell. The second is carried out dimension-by-dimension with the 
assumption that q is piecewise constant at t = t,. In one dimension we get 

Llx(q;+” -4,“)+~t(f(~~+,,*)-f(~~:,“1,2))=0, 

where $‘+ 1i2 and gr- 1,2 are the values of q at x,, ,,* and x,- ,,?, respectively 
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(t, < t < t,, 1). These q-values are derived from the exact solution starting from 
piecewise constant data [93]. 

The random choice method is similar to the Godunov method in many ways. 
The starting values at the time level t, are a piecewise constant approximation of q. 
The differential equation is solved exactly in t, d t d 1, + 1. The difference is that the 
integral 

is approximated by one random sample dxq(& t n + i ), where 5 is equidistributed in 
the interval (x,- 1,2, x,+ i,?). 

The Godunov method is of first order and it can be generalized to higher order 
by replacing the piecewise constant approximation by piecewise polynomials. The 
linear approximation is given in the work of van Leer [133]. Colella and 
Woodward have relined the technique further by a piecewise quadratic 
approximation (see [ 1341 and references therein). 

It is easy to see that the Godunov method is upwind if all signals have the same 
direction at a cell boundary. If, e.g., all eigenvalues of df/aq are positive then q;- 1i2 
and g;- 1,2 will be q; and q;- 1, respectively. For the general case, see Ref. [95]. 

The exact solution which is needed in the Godunov method can be replaced by 
approximate ones. Perhaps the most successful of those is Roe’s method [135]. 
This can be seen as a method of Godunov type, where the exact solution is replaced 
by an approximation based on linearization. It can also be seen as a direct exten- 
sion of the linear upwind scheme (5.6). The difficulty with the conservation form 
that was mentioned earlier where aflax is replaced by A(q) . (dqjax) is overcome by 
Roe. Instead of the Jacobian matrix A(q) he uses a mean-value matrix such that 
A(q, r)(q - r) =fk) -f(r). 

One advantage of the early upwind schemes was that no numerical oscillations or 
Gibbs phenomena were created at the discontinuities. The second-order centered 
methods always generate those oscillations. This lack of oscillatory overshoots has 
less to do with the upwinding than with the fact that the methods were of first- 
order accuracy. They were monotone in the sense that the function G in (4.ia) was 
a monotone function of the dependent variables. When higher-order upwind and 
upwind-biased methods were introduced they also created oscillations aroun 
discontinuities. Different nonlinear modifications of the basic schemes were 
developed as e.g., the slope limiters in the piecewise linear Godunov methods 
[ 1331. 

Marten introduced the concept of total variation diminishing (TV 
[96] as a guideline for these modifications and the general scheme design The 
TVD schemes are algorithms for which 
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when applied to scalar conservation laws. The TVD property eliminates numerical 
oscillations. A number of different TVD-schemes have been developed during the 
last years. In these schemes the order of accuracy is automatically reduced at 
extrema in order to eliminate the oscillation. It was natural that schemes with 
nonlinear limiters were first introduced for the upwind or Godunov type schemes. 
The necessary decomposition of the matrix A for systems had already been done. 
The TVD property (5.8) does not hold for systems and can only be used for the 
characteristic quantities. 

Treatment of Vortex Sheets 

One of the difficulties in the proper numerical treatment of a vortex sheet is its 
inherent instability, and another is its tendency to spread because, unlike a shock, a 
vortex sheet does not naturally steepen. For the latter reason the common 
approach has been to track the sheet within the context of a Lagrangian or grid- 
free solution method. 

(i) Vortex-sheet tracking. Rosenhead [72] in 1931 introduced the concept 
of modelling the sheet by approximating it by a finite number of point vortices. As 
mentioned above these discrete-vortex methods have since been under continued 
development in order to deal with the singular velocity field in their formulation. 
Due to its self induction, parts of the sheet become stretched while other parts are 
compressed. It is difficult for a method to maintain a sufficient number of points in 
the stretched parts and to control the motion of the many points that migrate into 
the compressed regions. An alternative approach is the boundary integral or panel 
method which directly discretizes the sheet into a large number of segments, and 
the Cauchy-principal-value integral is evaluated in such a way that the correct 
behavior of the induced velocity is produced at points near the sheet. This method 
avoids some of the weaknesses of the discrete-vortex formulation, but it too has dif- 
ficulties where the curvature of the sheet is great. In those regions where the sheet 
has undergone many turns around the spiral, the usual recourse is to replace the 
core of the spiral by an isolated line vortex that is connected by a cut to just a few 
remaining outer turns of the spiral sheet. It is a good approximation for the flow 
nearby but, of course, the detailed nature of the inner core is lost, and if the core 
itself has sufficient curvature along its axis, this idealization may not be dynamically 
consistent. Another drawback of this approach is that the starting location and the 
topology of the sheet must be specified beforehand. In practice it seems that the dis- 
crete-vortex method is preferred for studying fundamental vortex dynamics because 
the topology is unknown, whereas the panel method is the one of choice for study- 
ing vortices shed from aircraft wings because the overall topology of these flows is 
better understood and usually the precise motion in the core regions is not of the 
first importance [117, 561. 

One way to overcome the problems with predetermined vortex structures and 
singular vortices is to use vortices with finite cores. In Ref. [136] Chorin computes 
incompressible flow by letting a collection of vortex blobs be transported by the 
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velocity field induced by the approximate vorticity distribution. The viscosity is 
taken care of by random motion of the blobs. This vortex method has been studied 
extensively theoretically. Hald [137] and Beale and Majda [ 1381 prove con- 
vergence of variants of the method for the incompressible Euler equations. Several 
successful applications have been reported, see, e.g., Ref. 139], in particular, in 
connection with combustion. 

(ii) Vortex-sheet capturing. A relatively new development is the attempt to 
capture the vortex sheet in a weak solution obtained by finite-differences upon a 
grid precisely in the way that shock discontinuities are captured. This endea 
still in its infancy and many questions and doubts remain. But if successful, it 
the promise of a method that can treat a general vortex-sheet configuration without 
prior knowledge of its topology and, at the same time, contains a theoretical 
malism which perhaps can cope better with the singular nature of the problem. 
a perplexing dilemma still surrounds this approach. It is attractive because a vortex 
sheet need not be presupposed in the flow, but it is generally believed that vortex 
sheets or, more properly, vortex layers arise from the action of friction at sohd 
walls. So in order to create the sheet one has to calli upon a mechanism out 
of the system of the governing equations, even though the sheet is a bona 
discontinuity of the Euler equations. Nevertheless, numerical experiments show 
vortex sheets do occur automatically in solutions and they are reasonably realistic, 
too. 

The common explanation is that the dissipation of the numerical scheme is the 
agent responsible for the initial creation of the sheet. This argument is further rein- 
forced by loss of the total pressure observed in the solutions. Powell et al. [I i3], 
however, recently clarified this issue. They demonstrated that varying the amount of 

numerical dissipation, in fact, has very little effect on the observed total pressure 
loss. Instead, they explain, the loss is an artifact of the capturing of the sheet. As 
with a shock, capturing the jump in the transverse velocity across the sheet requires 
the support of the jump profile with at least one or two points in the transjtion 
layer (see Fig. 18). Any of these transition points necessarily implies a loss in totah 

ressure, with the maximum loss occurring at the center at a value determined by 
the magnitude of the jump. 
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FIG. 18. A vortex sheet has a discontinuity in the velocity vector. Any numerical solution that sop- 
ports the jump in the transverse component may show either a loss or gain in the total pressure. 
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Speculating on the origin of the jump itself, Rizzi [ 1193 recently conjectured that 
perhaps the infinitesimal shear or vorticity waves in the differential Euler equations 
can grow nonlinearly by stretching and finally break to form a finite amplitude vor- 
tex sheet. We hope that more numerical experiments will stimulate further 
theoretical investigations of this issue. 

Another doubt concerning this approach is the diffusion of vorticity inherent in a 
solution on a finite grid. Some of the finite-difference schemes surveyed above have 
special features built into them to keep a shock as naturally sharp as possible. No 
finite-difference scheme has yet been devised to do the similar thing for a vortex 
sheet. The reason no doubt is that good schemes for shocks are based in one way or 
another on the one-dimensional Riemann problem, but a vortex sheet only appears 
when the second dimension is taken into account. Roe [109] recently addressed 
this issue and has discussed ideas for formal two-dimensional schemes. In current 
practice some schemes do artificially steepen the profile across a vortex sheet (e.g., 
[156]). In this preliminary state of affairs we must rely on numerical explorations 
of the underlying issues in order to point the way for the further development of the 
theory. 

6. USING ADVANCED SUPERCOMPUTERS 

The first generation of commercial computers appeared during the early 195Os, 
the supercomputers of their day. Per unit performance, they cost more than current 
supercomputers, and were said to be so powerful that only special groups of rather 
knowledgeable scientists and engineers could find applications for them and would 
be willing to undertake the considerable effort required to learn how to use them 
[152]. The situation remains similar today. It is primarily special scientific users 
who are willing to assume the burden of creating both application and system 
software to exploit the advanced architectural features available only on the super- 
computer. But the groups grow in size as the system software becomes more stan- 
dard and as knowledge of the special programming techniques for application 
software spreads. This is evident in the growth that has taken place since the 
introduction in 1976 of the CRAY 1, the first of the current crop of supercomputers, 
which initially was produced at the rate of one machine per year. Now in 1986, 
when about 180 machines from a number of different manufacturers are in 
existence, new CRAYs are being produced at around 13 per year. 

After reviewing the fundamentals of vector architecture, we look at some of the 
experiences learned during the past 10 years with vector processors applied to scien- 
tific computing in order to point out the lessons required to be learned in order to 
use these machines most effectively. Accumulated over a number of years, this 
experience is valuable, we believe, because it points the way to the transition from 
the sequential machines of yesterday to the parallel ones of tomorrow. 

A sequential stored-program machine contains a memory, an instruction 
processor for control, an arithmetric processor, and an input/output system. Its 
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FIG. 19. Overlapped operations in a segmented multiply. 

memory holds both data and instructions whose contents are referenced by unique 
addresses. Instructions are coded patterns of bits that specify the operations to be 
done and carry addressing information to access the required operands in memory. 
Switching speed of the devices, timing tolerances of individual components, and 
packaging and interconnection delays all set a lower limit on the machine cycle 
time. At a given component speed, the computation rate in a stored-program com- 
puter can be enhanced by increasing the concurrency of its operations. For exam- 
ple, arithmetic processing can overlap with fetching the next instruction from 
memory, multiple interleaved memory units allow slower memory to be mat d to 
a faster processor, and the processor itself can be segmented into a number sim- 
pler subprocesses, which then overlap as in an assembly line (Fig. 19). Two-way 
interleaved memory allows the next fetch to occur while the other bank is still busy 
executing the restore cycle. But the success of measures like these is limited 
ultimately by the hardware architecture that treats each operand individually one at 
a time. 

Vector processors instead incorporate hardware that works on assembl 
operands called vectors (or arrays or strings) by a pipeline procedure in 
perform many concurrent arithmetic operations with the issuance of a single vector 
instruction (Fig. 20). The high bandwidth of the communication hardware in these 
machines helps to keep the pipeline saturated and majntains high throughput. The 
instruction set includes vector instructions that allow one particular operation to be 
carried out cm a selected set of operands identified as a vector. When the control 
unit issues a vector instruction, the first elements of the vectors are sent ta, the 
appropriate pipe by way of buses followed by the second group of elements sent to 
the same pipe using the same buses until all the operands have been tra~smitt~ 

PIPELINED 
PROCESSING UNITS 

FIG. 20. Functional diagram of a vector supercomputer. 
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Meanwhile after the startup time of the pipe, the first result appears and is trans- 
ported by way of another bus to its residing location. When full, the pipe delivers a 
new result every cycle period of the pipe (see [141, 1471). 

Let us look at two examples of vector processors, Cray Research’s CRAY-1 and 
Control Data Corporation’s CYBER-205. The CRAY-1 contains 13 independent 
pipelines referred to as functional units. Two are for address arithmetic, four 
process nonfloating point scalar operations, another four the vector operations, and 
the last three are for either vector or scalar floating-point operations. The vector 
functional units are fed from a set of eight vector registers containing up to 64 
numeric quantities of 64 bits with an address range of 4 M words. The presence of 
the vector registers reduces the traffic flow to and from the main memory, and then 
fast access time to the processor assists in reducing the startup period for vector 
operations. In this way the vector registers act as a type of fast intermediate 
memory. The peak vector performance rate is 80 Mflops, though ordinarily only 
27 Mflops are realized because a simple operation needs 3 transfers of data per 
cycle (two loads and one store) but the machine offers only one word transfer to 
and from main memory per cycle [142]. The 16-way interleaved 50-ns memory is 
limited to a bandwidth of 80 M words per second. Thus, a major coding objective is 
to balance the demands on computation and memory and remain under the 80 M- 
wps rate. One indicator of the degree of parallelism in a vector machine is the 
length of the vector for which a machine reaches half the speed of its performance 
for an infinite-length vector [140]. For the CRAY-1 this value varies from 7 to 18, 
depending on whether the operands reside in the registers or the main memory. 
Thus even with relatively short vectors, performance is better when the machine 
operates on data from within register files instead of from memory. The CRAY X- 
MP, introduced in 1983, addresses some of the weaknesses of the CRAY-1 with a 
cycle time of 9.5 ns and 640 M-wps memory bandwidth. The bottleneck in data traf- 
fic has been improved to 3 transfers/cycle. Its peak performance is 105 Mflops, but 
because of memory bank conflicts, the average performance usually measured in 
applications is about 70 Mflops. 

The CYBER-205 vector processor consists of either one, two, or four vector 
pipelines, each of which may perform a variety of operations: floating-point 
add/subtract, multiply/divide/square root, shift, logical, and delay. These pipelines 
are fed from a vector stream unit that is directly coupled to the memory and is 
designed to maintain the data flow between the main memory and each of the 
pipes. The pipes are designed to work together on only one operation at a time and 
the pairs of operands are directed to the pipes on a round-robin basis, thus perfor- 
ming a true but limited parallel computation. Vector startup times are long because 
the main memory runs at a quarter of the speed of the CPU (80 ns versus 20 ns) 
and the general-purpose pipes have a naturally long startup period. However, once 
the pipelines are full, the ultra-high bandwidth memory (800 M-wps) can provide 
exceptionally long vectors in an uninterrupted manner. Each million words of main 
memory contains 16 memory stacks, and each stack holds a half word, Any single 
memory operation may access up to 16 stacks simultaneously, corresponding to 
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eight words sf data. Since the stacks are also eight-phase interleaved, a subsequent 
memory operation on that set of stacks may be started on the following machine 
cycle [ 1471. Since the scalar and vector processors each contain independent 
instruction controls, the scalar processor can execute its instructions in parallel with. 
the vector processor that is executing its own independent instructions, ~rov~di~~ 
that there are no conflicts with other processes such as certain memory references 
or order-dependent instructions. Strings are processed as logicai/shift/deiay vector 
operations. Another key feature of the CYBER-205 is its reasonably sophisticated 
virtual-addressing scheme, including variable page size, and an addressing ca 
of about 4 x 1012 words. Its pipelines offer an additional feature, the ability t 
form half-precision arithmetic on 32-bit operands with a doubling in the result rate. 
The top speed of the two-pipe machine then is 200 MfIops, and 400 Mflops for t 
four-pipe machine. 

Vector programming 

In writing a program to run effectively on a supercomputer, the goal is to exploit 
all of the architectural features of the hardware and carry out the steps of the 
algorithm in the way that minimizes the inherent imbalances in the particular 
machine being used. Because of the slow transfer rate between the main memory 
and the vector registers of the CRAY-1, for example, one tries to chain together 
operations as much as possible while the operands still reside in the registers. In 
general, vector computers offer enhanced performance when operations are Carrie 
out on assemblages of data. Characterizing the recent experience with using vector 
processors, Schonauer [142] defines three levels of concurrency attainment. At the 
first level the user simply installs his program and compiles it with the request for 
automatic vectorization. Since it was written originally for a sequential corn 
with no regard for vector processing, there exists at best in some of the 1 
groupings of operands that can be treated as vectors, but the concurrency in the 
data structure is small and fortuitous. Active intervention by the programmer in the 
second level rearranges and interchanges loops in order to increase the iden- 
tification of vectors. These actions enhance the performance somewhat, but the 
original scalar data structure hinders further vector processing. To go beyo 
second stage and obtain optimum concurrency requires a good knowledge 
important architectural features of the machine, the restructuring of the data for 
compatibility with the architecture, and rewriting the code to replace the loops 
themselves by vector commands. 

Since the CRAY-1 compiler offers few extensions to the FORTRAN language to 
help with vectorization, one mainly rearranges the sequence of standard F 
TRAN statements in the program and hopes that the compiler vectorizes t 
automatically. While the long-vector hardware of the CUBER-205 offers potentially 
a high degree of concurrency, its definition of a vector as contiguous memory 
locations makes automatic vectorization more diifieult. The instruction set, 
however, includes subroutine-calling sequences of commands that explicitly invoke 



46 RIZZI AND ENGQUIST 

vector operations. The compiler recognizes these calling sequences at the FOR- 
TRAN level of the extended language and emits machine instructions, not sub- 
routine linkages. Thus the CYBER extensions to FORTRAN provide the program- 
mer with the means to organize the vector assemblages himself and to shape the 
structure of the data for more efhcient processing. We believe that this type of direct 
programming interdiction will become more prevalent with the coming mul- 
tiprocessor machines. For that reason we elaborate further on the CYBER vector 
commands. 

To the CYBER-205 programmer a vector is just an ordered list of integer, real, 
complex, or even bit data stored in a contiguous set of memory locations. The sim- 
plest example of a vector is a one-dimensional FORTRAN array. At the FOR- 
TRAN level it is designated by a descriptor that contains the vector’s starting 
address and length. In explicit form the descriptor 

ARRAY(INDEX; INTEGER EXPRESSION) 

points to the vector whose first element is the element residing in ARRAY at 
position INDEX and whose length is the number given by INTEGER 
EXPRESSION. 

One often wants to carry out IF-Test controlled arithmetic within a DO loop, 
but per se it does not translate into a vector operation without additional con- 
sideration. A simplified example of setting the far field boundary conditions on the 
flow velocity V(J) that either enters or leaves the computational domain depending 
upon the sign of the flux V(J) * S(J) illustrates one way to vectorize it with the 
language extensions. The scalar algorithm to perform this is 

D03J=l,N 
FLUX(J) = V-(J) * S(J) 
V(J) = BCIN 
IF (FLUX(J).GT.O.) V(J) = BCOUT 

3 CONTINUE 

and it forces the computer continually to change from arithmetic processor to 
decision maker on every pass through the loop. In order to vectorize it we must cir- 
cumvent this interruption of the arithmetic processor. Since the conclusion of an 
IF-Test is binary, either true or fase, the same information can be carried in the bit 
vector Q( 1; N) = FLUX(1; N).GT.O. whose elements are given the value 1 if the 
expression to the right is true and 0 if it is false. Thus a sequence of relational 
expressions evaluate to an entire bit vector of logical results, and we can build the 
complete decision structure of this example at vector processing speed. The 
information in the bit vector can be used to assign the appropriate boundary value 
to each element of V( 1; N) through the vector masking function QS I/MASK. The 
vector algorithm for this example then becomes 
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ImY G?(N) 
FLUX(l;N)= V(l;N)*S(l;N) 

Q( 1; N) = FLUX( 1; N).GT.O. 
V(1; N) = QsVMASK[BCOUT, BCIN, Q(1; N); i/(1; N)] 

The first line after the bit declaration calculates all the flux values, the secon 
builds the decision structure, i.e., the bits pointed to by Q(1; N) contain th 
comes of all the IF tests, and the third assigns to the elements of V either the value 
BCOUT if the corresponding bit of Q is 1 or BCIN if it is 0. The entire algorithm is 
just three vector instructions. 

The coordinate transformation, or lack of one, upon which the grid is built dic- 
tates the degree of structure in the computational data in FORTRAN. Consider 
taking the difference of fluxes in three dimensions. For a given cell one must first 
identify all of its surrounding neighbor cells in the physical space and then form dif- 
ferences between all of these. With a coordinate-mapped grid one knows directly 
the correspondence between locations in the physical and computational s 
Moreover, there is a constant relation in this correspondence as one moves from 
one cell to another. One takes differences then simply by incrementing the 
putational coordinates 1, J, K. With the offset or shift command on the CYBE 
this turns into a vector process across the three-dimensional data set without ever 
writing a DO loop. For example, simply shifting the vector starting location in the 
flux difference F( 1, 1, 2; N) - F( 1, 1, 1; N), performs all the differences in the K 
direction throughout the interior of an N-element data block (Fig. 21). The inherent 
concurrency of the algorithm now becomes apparent. In this way all of the work in 
updating interior points is exclusively vector operations without any data restruc- 
turing or motion, because of the ordering that results from the structured grid. The 
problem remaining is how to interleave the boundary conditions into this long vec- 
tor. The boundary conditions require different operations and interrupt the vector 
processing of the interior values. One approach, in conjunction with the data-struc- 
ture design, that overcomes this interruption of vector processing is to ~irne~si~~ 
scratch space to buffer the end overflow and to receive the boundary condition 
[ 1.511. Diagrammatically the data flow in the algorithm may be viewed as a series 
of steps starting with the dependent variable 4 and pyra.miding up first to the flux ,F~ 
and then to the flux difference FD over the whole K-direction, (Fig. 22,) 

If the grid, however, is irregular, the data loses this highly coherent structure 
between neighbors in the physical and computational spaces. The identification 
the neighbors then has to be computed, i.e., indirect addressing procedures must 
invoked. On the CYBER-205 this can be done with hardware commands to vector 
gather and scatter instructions. 

Explicit time integration vectorizes naturally because it is an algebraic operation. 
Being a matrix calculation, implicit time integration requires additional 
preparation. Using the implicit approximate factorization scheme of Beam and 
Warming, Deiwert and Rothman [145, 161, 1621 obtain the desired vector struc- 
tures by first transposing the data in pencils for each of the factored one-dimen- 

58117211-4 
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FIG. 21. Because of the grid structure the flux Fcan be differenced as a vector on the CYBER-205 by 
off-setting its starting location. 
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FIG. 22. Vector alignment and data flow m the algorithm for interleaving the boundary conditions 
into the 3D vector differencing of the flux field. 
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FIG. 23. Functional diagram of a parallel supercomputer having local and shared global memory 

sional operators. Although they usually require more restructuring of the data (data 
motion) than explicit schemes do, good vector processing can be realized with 
implicit difference methods, particularly if the grid is regular 

Parallel Computing 

Performance is enhanced when the hardware of a vector supercomputer is packed 
into as small a space as possible, and when groups of numbers are assembled and 
passed through clusters of chips working in parallel, each dedicated to an individual 
instruction in a calculation program. The newest machines, multiprocessor super- 
computers, further extend this parallism by grouping a number of vector processors 
together to work on separate parts of the same problem. (Fig. 23.) Learning how to 
use the multiprocessor architectures properly is the current problem at hand [144]. 

ow processors are to be connected to each other and how memory is to be 
organized, either shared or individual, global, local, or a combination, are just 
some of the issues. 

Memory hierarchy is another interesting issue. At the heart of the hierarchy lies 
the fact that memory size is inversely proportional to its speed of access and its 
cost, i.e., the various memory devices in Fig. 24 grow in capacity but decrease in 
speed and cost as one goes from left to right. Magnetic disks, of course, are the 
slowest storage media, but the CRAY X/MP offers the SSD as an alternative 
semiconductor storage device that is 30 times faster than the usual disks. T 
device promises to alleviate the severe bottleneck in data communication encoun- 
tered when the problem overflows main memory and disks are used as secondary 
memory, An initial attempt with a B-Mword SSD, however, proved disappointing 
[ 1461. More recent reports have claimed better success with a 16 M device but a 

FIG. 24 Functional diagram of memory hierarchy 
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thorough analysis of how this is achieved is still lacking. In particular, it seems that 
it is not only a matter of the hardware. Whether one programs in assembler 
language or in FORTRAN, where words are transferred in blocks of 64, also 
appears to be involved. 

In the CRAY-1 and the CYBER-205 the different pipeline processors all perform 
the same computations at the same time. This is a very restricted form of parallel 
processing and rather straightforward to comprehend. It is much more difficult to 
manage individual processors acting independently of one another. We have dis- 
cussed how users of the CRAY-1 and the CYBER-205 have to modify and even 
completely rewrite their codes in order to exploit the computational power of the 
vector architecture. We believe the transition to the new multiprocessors will be 
even more demanding and require a greater programming discipline. 

As with the CYBER-205, here too, extensions to the FORTRAN language are 
needed in order to take full advantage of the greater parallelism of the hardware. 
The programmer directly wants to be able to define the separate and concurrent 
tasks and to synchronize them so that a certain task is not started until some other 
one has finished [148]. Having only global memory accessible by all the 
processors, the CRAY X/MP, for example, offers the user software to steer the mul- 
titasking in the form of a library of subroutines callable from FORTRAN 
programs. Three basic services are provided by the library: task control, event 
semaphores, and locks. The first of these dictates the creation, progress, and ter- 
mination of multiple tasks, while the last two coordinate the tasks. Semaphores are 
the way to synchronize the tasks, and locks give the user the means to protect 
critical regions by allowing only one task at a time to access them. 

But there are inherent difficulties in the use of extended FORTRAN for mul- 
tiprocessors. For one, the concurrency indigenous to the algorithm may not be 
great enough and, even if it is, the identification of that concurrency in a FOR- 
TRAN program is often restricted by the syntax to be local. In particular, there is 
usually no way in FORTRAN to guarantee that two subroutines are doing things 
which are independent of one another. Perhaps the programmer should be forced to 
declare which are the input and output variables to a subroutine and the subroutine 
then is not allowed to change any other variables (see Andrews and Schneider 
[143]). On a machine with a shared global memory, a programmer can easily 
overlook the possibility of one processor changing the value of a parameter before 
another processor is finished using it. Such errors, called indeterminacy, are par- 
ticularly insidious because they can occur randomly. Some say task scheduling is 
too prone to human errors and we must leave it to sophisticated compilers to par- 
tition the problem into tasks and schedule them to the individual processors. It will 
take the next couple of years of experience working with these parallel machines in 
order to sort out an effective way to use them. It is clear, though, that an explicit 
time-integration algorithm based upon a regular grid is the most straightforward to 
implement on a multiprocessor because the data can be sectored into pieces of 
nearly equal size and each piece given to a processor. The programmer needs only 
to make sure that the proper information is passed across interior boundaries and 
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that the next time step does not begin until all of the current time integrations are 
completed. 

7. EXAMPLES OF SIMULATED FLOWS 

We have discussed some aspects of the theory for the computation of flowfiel 
that contain nonsmooth features like shock waves and vortices. The final step is 
test the theory and substantiate it. Comparisons between computed results and 
physical measurements of the flow are the usual means to verify the theory, 
comparisons between results from two different theories, as well as from two 
ferent numerical methods that solve the same set of equations, also give important 
insight that helps to determine the validity of the theory. The comparisons can be 
quantitative and precise, like the position and pressure rise across a shock, or they 
can be pictorial-schlieren photographs, oil-flow representations, computed 
streamlines, measured velocity directions, velocity vectors, vapor-screen 
visializations, etc.-which give a more representational overview of the broad struc- 
tures and movements of the Row. Here the post-processing of computational results 
that produces computer graphics plays an indispensible role in carrying out 
meaningful comparisons. In its own right, post-processing surveys of the corn 
results by graphic techniques, especially when enhanced by the dimension of color. 
allow us to probe and examine all aspects of the flow features resolved in the 
solution and offer the opportunity to see and learn new fluid phenomena. When the 
data sets are very large, the production of such visual surveys themselves are sub- 
stantial computational tasks, and the difficulties with handling and graphical1 
processing large volumes of data are only now beginning to be discusse 
[149, 1501. In addition to surveying the results of the computations, the exam 
we present below also serve to illustrate some of the ways that computer grap 
currently are being implemented. 

We first look at the results produced by two upwind methods when applied to 
problems containing shock waves. In the context of the blunt-body problem of 
supersonic flow past a cylinder perpendicular to the stream, Fig. 26 shows b0W 
wave fitted in the theory of Lyubimov and Rusanov [35] compared with one 
recently captured by the high-order TVD theory of Chakravarthy [154]. The new 
developments of the upwind schemes now allow even strong shocks like this one to 
be captured to a high degree of accuracy. 

With their second-order Godunov scheme, Glaz et al. Cl551 produced an 
accurate solution to the problem of planar shock-wave diffraction by a wedge. For 
the case of single Mach reflection, Fig. 25, compares the computed density contours 
with the infinite-fringe interferogram as well as with the measured wall 

ith consideration that viscous effects occur at the wedge corner and where the 
contact surface meets the boundary layer, the agreement can be called excellent in 
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region PIP0 region PIP0 region PIP, 

0 1.00 b 3 44 B 3.83 
1 2.71 c 3.52 h 3.91 
2 3.68 d 3.60 I 3.99 
3 3.33 e 3.0x 4.ou 
a 3.3u f 3.7B i 4.14 

FIG. 25. Comparison of computed and measured planar shock wave diffraction M, = 2.03 0 = 27”: 
[ 1551 (a) Interferogram and experimental isopycmcs, (b) numerically simulated isopycnics shown in (a); 
(c) 30 equally spaced numerical isopycnics; (d) wall-density distribution: -, computational results; ., 
experimental data (reprinted with permission). 
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FIG. 26. Comparison of bow shock-fitted and shock-captured solutions to the blunt-body problem 
for a cylinder: M,, = 8.0 [ 1541 (reprinted with permission). 

all respects. Both of these are highly relined methods for computing complex shock 
interactions accurately. 

Supersonic Kelvin-Helmholtz Instability 

Like its incompressible counterpart, the tangential discontinuity between two 
parallel supersonic streams is also unstable. Using the piecewise parabolic method 
(PPM) a second-order Godunov scheme, Woodward [I561 has calculated the 
time-dependent evolution of the vortex sheet separating a uniform stream above it 
that flows to the right with M= 1 from the uniform stream below it that flows to 
the left with an equal but opposite velocity. 

It is a finite-difference simulation of the unstable motion of the sheet. Because it is 
represented on a grid, the sheet tends to diffuse and forms a mixing layer, but the 
method trys to counteract this by automatically steepening discontinuities and by 
using a fine grid of 360 x 360 points in the half plane above the sheet. At time I = 0 
the sheet is given a small-amplitude sinusoidal disturbance that sets off an expan- 
sion of the flow at x = 0 bordered on each side by compressions at x = & 1. 
Figure 27 presents the time evolution of the unstable sheet. The left column of plots 
shows the motion of the sheet as revealed by contours of the cube root of co~~stant 

initial vertical position, i.e., y$’ = constant at t = 0. The dashed contours are those 
which were originally below the origin (y, < 0). The original sheet is traced out by 
the transition from dotted to solid contours. The right column of plots are contours 
of constant density. The dashed lines here are those with level values below I. At 
t = 1.25 (Fig. 27a) the sheet begins to roll up around the two steepening com- 
ressions regions at x = &l that feed upon the kinetic energy of the shear 

From t = 2.01 to 3.25 (Fig. 27b,c) the two nonlinear wave systems associated with 
the rollup draw closer to each other at x = 0. Embedded in each spiral vortex is a 
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FIG. 27. Contours of constant initial height y0 II3 and constant density shows the Kelvin-Helmholtz 
instability of a vortex sheet in supersonic flow. Stream above sheet moves to the right at M = 1, below to 
the left at M = 1 and the sheet is perturbed sinusoidally at t = 0: (a) t = 1.25; (b) t = 2.01; (c) f = 3.25; 
(d) r = 13.5 [ 1561 (reprinted with permission). 

shock which ends abruptly in a centered rarefaction at the slip surface. Before 
encountering these shocks, the fluid expands into supersonic flow by rarefactions 
which also serve to turn the fluid into the slip surface so that some of it becomes 
entrained in the vortices. Note that even though the flow becomes extremely 
convoluted, both the slip surface and the shock waves are given very thin and 
well-behaved numerical representations by PPM through its steepening of 
discontinuities. 
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Two of the transonic vortices collide at x = 2 1.5 to produce a complex vortex 
with two embedded strong shocks and two much weaker subsidiary shocks. 
3.25 (Fig. 27~) this composite vortex has split into two principal vortices 
smaller one just beginning to spin up at x = +1.5. In the meantime the other 
original pair of vortices have collided at x = 0. This collision produces four major 
vortices which ultimately merge into two vortices by interacting with the other vor- 
tex pair, (Fig. 27d) and results in the very symmetrical system of four vortices at 
time 13.5. The initial transient evolution thus consists of vortex collisions which 
generate additional vortices, while the subsequent gradual evolution involves the 
merging of vortices to arrive again at an ordered flow w-hich can persist for a very 
long time. The formation of the original kinks in the slip surface at nearly sym- 
metrical locations has excited a harmonic mode of oscillation in the shear layer. 

Woodward points out that a number of features of this compressible flow are 
familar from the corresponding incompressible flow situation: the rollup of the slip 
surface for finite amplitude perturbations, and the merging of vortices to give la 
coherent structures in the flow. The most intriguing phenomenon brought about 
compressibility is the generation of vortices in pairs associated with oppositely 
facing shocks on either side of the slip surface. Nonlinear features such as t 
be investigated only through numerical simulations based on the solution of 
differential equations. 

Shock Waves in Rotating Machines 

The flow in high-speed turbines also contains local regions of shock waves and 
rapid expansions that the machine designers want to simulate because of the 
hculty in making actual measurements in situ. The computational problem is 
ficult because of the complicated geometry. A turbine is made up of a numbe 
stages, each containing a stator and rotor-blade row. Unless they are widely spaced 
apart, the flow through these two blade rows, in motion relative to one another, is 
inherently unsteady. In an ambitious computation with two grids moving relative 
to one another, Hessenius and Rai [ 1701 computed this unsteady motion 
corresponding two-dimensional situation, i.e., two rows of profiles instead of 
Circumferentially averaging the inflow stream in order to make the problem 
Denton [ I591 recently produced the three-dimensional solution shown in Fig. 28. 
As the last stage of a steam turbine, it contains supersonic speeds up to IQ’ = 1.9 
with a shock standing between the two rows. 

Edge- Vortex Flow 

When a stream of air meets a delta-shaped wing at some incidence angle, the 
separates from the leading edge and rolls up to form a. steady vortex over the wing. 
If the wing is a ruled surface with the origin at the apex and if the flow is entirely 
supersonic, then the whole flowfield possesses conical similarity. The Euler 
equations in this case then become two dimensional, the so-called equations of con- 
ical flow. Murman et al. [ 1581 have compared the numerical results from a conical 
calculation with those of a fully three-dimensional one for the flow conditions, 
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FIG. 28. Mach number contours of flow computed through two blade rows in last stage of a steam 
turbine [159] (reprinted with permission). 

M, = 1.5 and CI = lo”, and found very good agreement indeed. Both methods are 
centered finite-volume discretizations with artificial viscosity and Runge-Kutta time 
integration. Because the artificial viscosity tends to smear the shed vortex sheet, 
very dense grids were used in both simulations that produced crisp representations 
of both the sheet rollup and the shock waves [171, 1791. Due to their logical sim- 
plicity, these explicit centered schemes offer high computational efficiency when 
processing very large-scale data sets on vector computers, which is one of the 
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reasons these schemes are among those most commonly used in three dirne~s~Q~s 
today. 

Figure 29 shows a similar three-dimensional centered finite-volume computation 
of supersonic flow at M, = 1.5 around the same flat 70” swept delta wing now at 
CI = 15” incidence. The mesh is dense, 192 x 56 x 96 or just over one million cells 
(see Ref. [158] for plots of the mesh), but the entire 32-bit word data set was con- 
tained in the 16 Mword main memory of the GYBER-205 supercomputer. The 
average processing rate for this large-scale simulation was 125 Mflops, maintained 
throughout the 2.1 h execution time for 1000 time steps and better than half the 
maximum performance of that two-pipe machine. The sheet rolls up in an elongate 
elliptical spiral, evident in the vorticity magnitude contours (Fig. 29a), and sh~c 
waves appear over and under the vortex because of the high supersonic speeds 
induced locally by the spiraling motion. These shock waves are very local, and they 
are observed only in very large-scale simulations with sufficient grid density to 
resolve their structure (compare the analogous cases in 1172, 1651). The axial view 
of Mach contours along the vortex core indicates the conical structure of the flow 
over the wing, which breaks abruptly in the trailing edge shock and vortex sheet, 
and resembles the features of the shadowgram in Fig. 5. The comparison of a&. 
contours in the spherical surface at x/c = 0.8 with those of the conical results of 
Murman and Rizzi [180] again shows good agreement for the position of vortex 
sheet and shock waves. The numerical shear layer, i.e, the captured vortex sheet in 
the 3D solution, is not completely smooth, however. The detail of the streamlines 
near the leading edge (Fig. 29d) reveals several ornamentation vortices forming 
upon it, which is a form perhaps of compressible Kelvin’s cat’s eyes. Features 
as this instability of the vortex sheet, which may be instigated by the cross 
shock near it, also require a dense mesh in order to bring out these fine derails and 
reveal new phenomena [171, 1791. They, however, were not seen in the conical 
calculation, and this raises an interesting question. If the body is conical and the 
boundary conditions are compatible to conical flow, must we expect the three- 
dimensional solution to be conical, or can phenomena like an instability in the 
interior take place and break the similarity and yet still satisfy the boundary con- 
ditions? It appears to be an open mathematical question. 

As we have seen, many years of research have gone into perfecting the methods 
and many comparisons have demonstrated that shock waves are captured 
accurately and effectively. A natural question now is how well do these rn~t~~ds 
capture vortex sheets. The lack of a steady model problem in one or even two 
dimensions, together with the absence of an exact solution make the investigative 
of this issue exceedingly difficult. Hoeijmakers and Rizzi [I643 devised one direct 
way to try to answer it (see Ref. [ 1571 also). For the steady 3D problem of Ho-w 
speed flow past the same delta wing as above but now at 20” incidence, they com- 
pare the vortex sheet captured in the numerical solution to the ~~compress~b~e Euler 
equations with the vortex sheet adjusted and fitted dynamically to a boundary- 
integral or panel method solution to the Laplace equation [112]. That comparison 
shows that the strength and position of the vortex features of both theories are in 
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FIG. 29. Large-scale Euler simulation of supersonic flow past flat 70” swept delta wing, M, = 1.5, 
a = 15”, 192 x 56 x 96 mesh cells (Rizzi): (a) vorticity and Mach number contours; (b) Mach number and 
surface C,, in x/c = 0.8 span section; (c) corresponding Mach contours from Murman’s conical flow com- 
putation, 128 x 128 cells; (d) crossflow streamlines in the 3D solution. 
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good agreement, as is the overall pressure and velocity fields. But the captured vor- 
tex sheet appears to be spread over 7 or 8 mesh cells, as opposed to usual 3 or 4 
cells observed in the capturing of shock waves. (See also Ref. [ 1111.) The su 
sequent question then arises, was this good agreement just fortuitous? One way 
try to find out is by mesh refinement. The Euler solution in the original comparison 
was obtained by the artilicial compressibility method with about 80,000 cells in the 
mesh. Figure 30 gives the corresponding comparison with the incompressible Euler 
solution produced with the same method on a mesh with twice the number of cells 
in each direction, about 640,000 altogether, in a computation contained in the cen- 
tral memory of a 8 Mword CYBER-205. We see that in fact (Fig. 30a,b) the entire 
llow including the position and strength of the vortex features are not very sensitive 
to mesh refinement. Although evident in the medium mesh solution also, the helical 
wave on the core of the vortex that develops ahead of the trailing edge is now seen 
in better detail (Fig. 30b,c). It appears that due to the three-dimensional distur- 
bance of the trailing edge, the straight axial core develops into a helical spiral ahead 
of the trailing edge and splits into a number of subsidary vortices [166]. The dis- 
order in the core at x/c = 0.9 is reminiscent of the unstable pattern seen in the 
shadowgraph of Pierce (Fig. 3). Perhaps it is the outcome of a vertical i~sta~ili~y 
like the one studied by Snow [ 1671. The effect of the instability, however, is restric- 
ted to the core near the trailing edge. The three spanwise comparisons of the c 
tured and fitted sheets (Fig. 30b) demonstrate the good agreement between 
position and shape of the vortex sheets in the two theories. The comparison of 
axial velocity component u at the leading edge in Fig. 30d indicates that the c 
lured sheet obtains the correct jump in velocity across the sheet and that 
magnitude is not sensitive to the size of the mesh. Capturing the sheet with the cen- 
tered scheme does not seem to produce significant oscillations. The profile of 
pressure through the sheet is continuous. The definite jump in velocity correspo 
with a jump in the total pressure (see Ref. [ 1113) in a way that supports 
argument of Powell et al. [ 1131. 

Because the vortex core does not expand substantially, we do not believe that 
this is a case of full-blown vortex breakdown. The problem of vortex breakdown is 
also being studied by numerical simulations, and Krause et al. [168, 1601 have 
made some recent significant findings. 

Viscous Flow Simulations 

The separation from, and the flow behind, a blunt body is generally thought to 
be dominated by viscous forces. Afterbody flows and wakes are one category (see 
Tanner for a survey of these problems [15]) within this class. For a number of 
years Deiwert [161, 1621 has been studying this problem with or without a. jet- 
plume exhaust by solving the thin-layer Reynolds-averaged Navier-Stokes 
equations. Among the objectives of the simulation are the prediction of plume- 
induced separation and the effect of the jet on the afterbody pressure drag. When 
the ratio of jet-to-freestream static pressure pJ/p, is low, say around 2, gradients in 
the solution remain moderate and the flow separates close to the nozzle li 
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CAPTURED VORTICITY 

FITTED VORTEX SHEET 

---FITTED VORTEX SHEET 
__ CAPTURED VORTlClTY 

b 
MEDIUM 

FIG. 30. Vortex sheet fitted to panel-method solution to incompressible flow compared with vortex 
sheet captured in Euler solution for flow past flat 70” swept delta wing, M, = 0, 0: = 20”: (a) Vorttcity 
magnitude contours computed for the Euler equations with medium mesh (80x 24x40 cells) and fine 
mesh (160 x 48 x 80 cells), and fitted vortex sheet in panel method solution. Different contour 

increments. (b) Comparison of captured vorticity contours and fitted sheet in three spanwise sections. 

(c) Contours of surface pressure computed in Euler solution suggesting a helical wave on vortex core just 
ahead of trailing edge. (d) Comparison of fitted and captured profiles of surface axial velocity u/U, and 
pressure. 
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higher ratios these gradients force a separation before the lip that is more difficuh 
to predict accurately and may even lead to numerical instabilities which can cause 
the calculation to break down. Figure 31 gives an example of the overall detail 
obtained in Deiwert’s solution of flow over a boat-tail body of revolution and how 
it compares with a schlieren photograph for pressure ratio 9.1. The shocks, the 
expansion fan, and the shear layer between the outer flow and plume as well as the 
values on the surface including the separation point are all predicted reasonably 
well. The turbulent small scales, visible in the photograph, however, are not 
simulated. 
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FIG. 31. Density contours and streamlines from the Navier-Stokes solution with turbulence model- 
ling for the boattail exhaust-plume flow p,/p, = 9.1 [161, 1621 compared with the schlieren photograph 
M, = 2 [ 1631 (reprinted with permission). 
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FIG. 32. (a) Surface streamline pattern and (b) isoMach contours over a hypersonic cruiser com- 
puted in the Navier-Stokes solution for M m = 5.95, c( = 6” [ 1691 (reprinted with permission). 

The last example concerns high-Reynolds-number flow past a hypersonic vehicle. 
Shang and Scherr [169] recently carried this out with a grid of 475,200 points on 
which they solved the full Reynolds-averaged Navier-Stokes equations making use 
of out-of-core storage with an SSD on the CRAY X-MI?. Figure 32 shows the sur- 
face streamlines and isoMach contours in the symmetry plane and indicates the 
detailed flow directions over this body. With calculations like these the designer of 
such a vehicle now has a prediction tool to put at his disposal more precise infer- 
mation than ever before. 

8. CONCLUDING REMARKS 

Computational fluid dynamics has been under continuous evolution since its 
inception at the beginning of this century. We have pointed out a number of themes 
that have unfolded along the way. In particular it strikes us that the recurrent one 
of a push-pull mechanism between the need for a solution to a practical problem 
and the theory to support the means to obtain that solution is a dominant and 
especially vital driving force in the development of this field. We have seen its effect 
in the progress made in the improvement of methodis to treat flows with shock 
waves, which has been an active branch of research for over 30 years. 

581/72.‘1-5 
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Unlike a shock which is a stable feature, a vortex sheet is fundamentally unstable 
and more difficult to handle numerically. The long-standing traditional approach 
for incompressible flow is by discrete, but grid-free, vortex elements, e.g., point vor- 
tices in 2D and vortex filaments in 3D. Only a little experience has been gathered so 
far when the flow is compressible, and most of that is with methods that solve a 
partial differential equation on a grid in order to determine the vortex structure. 
Interest, however, is growing now in this approach for incompressible as well as 
compressible flows, and work on its development is proceeding even though the 
feasibility of representing a vertical structure like a vortex sheet in a high-Reynolds- 
number flow upon a grid is questioned in some quarters. But the ubiquity of 
problems concerned with vorticity, “the sinews and muscles of fluid motions,” will 
in the future, we believe, channel more research into the refinement of the methods 
to deal with them, just as has taken place with shock problems. 

What are the future prospects for computational fluid dynamics? It is certain that 
development of all types of numerical methods will continue, and many new ones 
will be invented. We have seen a limit to the smallest scales we can resolve in a 
high-Reynolds-number flow placed upon us by the size of the computer. Although 
computer hardware develops at a rapid rate and each succeeding supercomputer 
grows substantially in size, this practical limit on resolution will be with us for the 
foreseeable future. Thus the small scales will have to be modelled by subgrid-scale 
techniques. 

But even before computers reach this stage, we may be facing a more fundamen- 
tal limit, and that is the limit of the determinacy of the mathematical model. 
Modelling implies a certain conceptual view of nature-a system of differential 
equations set up to portray abstract relationships between the constituents of some 
physical phenomena-and then the model is activated, either physically or by com- 
putation, producing a string of numbers [175]. Another string of numbers is 
obtained by actual observation of the physical phenomena, the two are compared, 
and we judge the degree of correspondence between these two sets of numbers as a 
measure of the accuracy of the model. The common belief is that the model always 
can be modified to improve the correspondence and that inexorable progress is 
expected toward the goal of making the two strings of number identical. But what if 
there is some element of randomness in the system? It can take a variety of forms: 
the observed phenomenon itself may contain continual perturbations, e.g., a sort of 
thermal noise, and our mathematical system, the Navier-Stokes equations, are then 
incomplete without some stochastic element [174]. On the other hand, the 
equations themselves may be overly sensitive to random perturbations in their 
initial and boundary conditions, or they may even contain some property of intrin- 
sic randomness and thus act in some way like a pseudo-random-number generator. 
Whatever, the case, if our models possess some chaotic element, we must face some 
limit to their predictability [174, 1761. 

The sorting out of this conceptual question, along with the host of immediate 
problems to refine the models and the methods, however, guarantees that CFD is 
going to be an exciting field to work in for many years to come. 
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